Classical control techniques require a mathematical model of the system dynamics, which derivation from first principles often demands expert knowledge or is time-consuming. In contrast, data-based control methods determine system properties and controllers from system trajectories. Whereas recent developments address linear systems, dynamical systems are generally nonlinear in practice. Therefore, this thesis first introduces a data-based system representation for unknown polynomial systems to determine dissipativity and integral quadratic constraints via sum-of-squares optimization.
The second part of the thesis establishes a polynomial representation of nonlinear systems based on polynomial interpolation. Due to the unknown interpolation polynomial, a set of polynomials containing the actual interpolation polynomial is deduced from noisy data. This set, along with a polynomial bound on the approximation error, forms the basis for determining dissipativity properties and designing state feedbacks with stability guarantees utilizing robust control techniques and sum-of-squares relaxation.
Leseprobe (PDF)
Keywords:
Kaufoptionen
Versandkostenfrei innerhalb Deutschlands | ||
*Sie können das eBook (PDF) entweder einzeln herunterladen oder in Kombination mit dem gedruckten Buch (eBundle) erwerben. Der Erwerb beider Optionen wird über PayPal abgerechnet - zur Nutzung muss aber kein PayPal-Account angelegt werden. Mit dem Erwerb des eBooks bzw. eBundles akzeptieren Sie unsere Lizenzbedingungen für eBooks.
Bei Interesse an Multiuser- oder Campus-Lizenzen (MyLibrary) füllen Sie bitte das Formular aus oder schreiben Sie eine email an order@logos-verlag.de
Wollen auch Sie Ihre Dissertation veröffentlichen?