
Abstract

In this thesis, we establish a data-based framework for verifying control-theoretic prop-

erties and synthesising state-feedback controllers for nonlinear systems. Since a precise

model of the underlying dynamics is not required a priori, this framework circumvents

a time-consuming modelling via first principles. More precisely, we introduce a novel

data-based system representation by combining polynomial approximation techniques

together with the set-membership methodology. Through robust control methods,

bounds on the noise and the error using polynomial approximation are taken into ac-

count. Thereby, a data-driven system analysis and state-feedback design with rigorous

guarantees are achieved. Moreover, the polynomial characterization of the proposed

system representation facilitates solving these control-related problems by means of

SDPs from SOS relaxation even though the unknown dynamics are nonlinear. The

thesis is separated into two parts. First, we investigate the determination of vari-

ous input-output properties for the special class of nonlinear systems with polynomial

dynamics from recorded input-state trajectories corrupted by noise. This constitutes

the basis for the development of the data-driven polynomial system representation for

nonlinear systems in the second part.

Data-based system analysis of polynomial systems

Chapter 3 addresses the verification of dissipativity for unknown polynomial discrete-

time systems from noisy input-state data. Moreover, the determination of IQCs in-

cluding a simultaneous optimization of the linear filter is addressed. For this purpose,

we construct the set of all polynomial systems consistent with the observed data.

More specifically, distinct non-conservative and over-approximating formulations for

this set of systems are provided to attain either tighter or computationally cheaper

characterizations. Given the knowledge of upper bounds on the noise and the degree

of the polynomials of the dynamics, these sets contain the true system. By robust

control techniques and a SOS relaxation, we can directly verify whether all systems

of the feasible system set, including the true system, satisfy the corresponding input-

output property by means of solving an SDP. Thereby, we can ensure the satisfaction

of the system property from noisy data even though a precise model of the system is

not identified. This finding, among others, is supplemented by combining the purely
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Abstract

data-driven approach with prior model knowledge and a theoretical examination of

the asymptotic consistency for an infinite amount of data.

Data-driven control of nonlinear systems by polynomial approximation

Based on the previous chapter and polynomial approximation, Chapter 4 introduces a

novel data-based system representation of nonlinear systems tailored for system anal-

ysis and state-feedback design by SDPs. To this end, well-investigated bounds on the

approximation error by polynomial interpolation are combined with a data-based set

membership for the unknown interpolation polynomial. In particular, we focus on

TPs as well as HPs, which offer additional degrees of freedom to improve the polyno-

mial approximation. To further refine the accuracy of the system representation, we

propose to obtain multiple polynomial approximations from data, where each approx-

imation only needs to represent the dynamics in a subset of the operation set. Since

the obtained system representation is described by polynomial sectors, the subsequent

determination of input-output properties can be executed by SDPs from SOS relax-

ation. In addition to Chapter 3, a state-feedback design with performance criteria

and the case of Gaussian noise are studied. The findings are evaluated in numerical

examples and in experiments on a two-tank system.

In conclusion, this thesis establishes a framework for the verification of control-

theoretic properties and the synthesis of state-feedback controllers for polynomial and

nonlinear dynamical systems from noisy input-state data. Despite unknown nonlin-

earities and noise-corrupted data, the proposed set-membership approach achieves

rigorous guarantees and enables an effective solution of the control-related problems

by means of SDPs.
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Deutsche Kurzfassung

Diese Doktorarbeit befasst sich mit der Verifikation systemtheoretischer Eigenschaften

und der Synthese von Zustandsrückführungen für nichtlineare dynamische Systeme auf

Grundlage verrauschter Daten. Da kein präzises Modell der zugrundeliegenden Dy-

namik im Vorfeld benötigt wird, umgeht der präsentierte Ansatz eine zeitaufwendige

Modellierung durch physikalische Grundgesetze. Dazu führen wir eine neuartige daten-

basierte Systembeschreibung ein, indem Techniken der polynomiellen Approximation

und aus der set-membership Literatur kombiniert werden. Durch die Einbeziehung des

Messrauschens und des Fehlers der Polynomapproximation mittels robuster Regelungs-

techniken werden rigorose Garantien für die Verifikation von Dissipativitätseigen-

schaften und den Entwurf von Zustandsrückführungen sichergestellt. Aufgrund der

polynomiellen Charakterisierung der datenbasierten Systembeschreibung führen diese

regelungstechnischen Problemstellungen durch SOS Relaxationen zu SDPs, obwohl die

unbekannte Dynamik nichtlinear ist. Die Doktorarbeit unterteilt sich in zwei Haupt-

teile. Zuerst werden Rückschlüsse auf diverse Eingangs-/Ausgangseigenschaften aus

gemessenen Eingangs-/Zustandsdaten für den Spezialfall von nichtlinearen Systemen

mit polynomieller Dynamik untersucht. Dieses Ergebnis bildet die Basis für die daten-

basierte polynomielle Systembeschreibung für nichtlineare Systeme im zweiten Teil.

Datengetriebene Systemanalyse polynomieller Systeme

Kapitel 3 adressiert den Nachweis von Dissipativität und IQCs, mit einer gleichzeitigen

Optimierung des linearen Filters, für unbekannte polynomielle zeitdiskrete Systeme

aus verrauschten Eingangs-/Zustandsdaten. Dafür konstruieren wir zuerst die Menge

aller polynomieller Systeme, die die beobachteten Daten erklären können. Um ent-

weder eine präzise oder rechentechnisch günstige Charakterisierung dieser Menge zu er-

halten, präsentieren wir verschiedene nicht-konservative und überapproximierende For-

mulierungen. Falls obere Schranken an das Rauschen und den Grad der Dynamikpoly-

nome bekannt ist, enthalten diese Systemmengen die tatsächliche Dynamik. Mittels

robuster Regelungstechniken und SOS Relaxierung kann durch Lösen von SDPs direkt

überprüft werden, ob alle enthaltenen Systeme, einschließlich dem wahren System, die

Eingangs-/Ausgangseigenschaft erfüllen. Dadurch können wir aus verrauschten Daten

sicherstellen, dass die Systemeigenschaft erfüllt ist, obwohl kein genaues Systemmodell
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identifiziert wurde. Dieser datengetriebene Ansatz wird durch zusätzliches Modellwis-

sen und eine theoretische Untersuchung der asymptotischen Konsistenz für unendlich

viele Daten ergänzt.

Datenbasierte Regelung nichtlinearer Systeme durch polynomielle Appro-

ximation

Basierend auf dem vorherigen Kapitel und polynomiellen Approximationsmethoden,

führt Kapitel 4 eine neue datenbasierte Systembeschreibung für nichtlineare Systeme

ein. Diese ermöglicht eine Systemanalyse und einen Entwurf von Zustandsrückführun-

gen mittels SDPs trotz nichtlinearer Dynamik. Hierzu werden bekannte Schranken

für den Approximationsfehler polynomieller Interpolationen mit einer datenbasierten

Menge von Polynomen kombiniert, die das unbekannte Interpolationspolynom enthält.

Speziell betrachten wir TPs und HPs, wobei letztere zusätzliche Freiheitsgrade be-

sitzen, um die Polynomapproximation zu verbessern. Um den Konservatismus der Ap-

proximation weiter zu reduzieren, können mehrere Polynomapproximationen aus den

Daten bestimmt werden, wobei die einzelnen Polynome jeweils die Dynamik nur für

eine Untermenge des Arbeitsbereiches approximieren müssen. Außerdem ermöglicht

die polynomielle Systembeschreibung die Bestimmung von Eingangs-/Ausgangseigen-

schaften durch SDPs. Zusätzlich zu Kapitel 3 betrachten wir hier den Entwurf von

Zustandsrückführungen mit Performancekriterien und den Fall, dass das Rauschen

Gaußverteilt ist. Die erarbeiteten Methoden werden in numerischen Beispielen, aber

auch experimentell für ein Zweitank getestet.

Zusammenfassend etabliert diese Doktorarbeit eine Methode zur Verifikation von

Systemeigenschaften und zum Entwurf von Zustandsreglern für nichtlineare Systeme

aus verrauschten Eingangs-/Zustandsdaten. Obwohl die zugrundeliegende Dynamik

nichtlinear und die Daten verrauscht sind, ermöglicht diese Methode garantierte Rück-

schlüsse auf die zugrundeliegende Dynamik und die Anwendung von SDPs, um ein

weites Spektrum von regelungstechnischen Problemstellungen effektiv zu lösen.
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Chapter 1

Introduction

1.1 Motivation

The application of classical control methods relies on a mathematical model of the

underlying dynamics. To this end, the system behavior over time is characterized

by difference or differential equations of the internal states, control inputs, external

disturbances, and measured outputs. A common avenue to determine these models

are first principles, e.g., Newton’s laws of motion for mechanical system or Kirchhoff’s

circuit laws for electrical systems. However, obtaining a sufficiently precise model

from first principles can be cumbersome due to the increasing complexity of systems in

engineering, for instance, soft robots [33], autonomous cars [78], and biological systems

[173]. Therefore, their successful application is jeopardized due to the requirement of

expert knowledge, a priori model simplifications, as well as in many cases being more

time-consuming than the controller design itself. At the same time, measured input-

output trajectories of the system are often available in storage or can easily be gathered

by exciting the system in experiments. For these reasons, alternative methods for

deriving controllers from input-output measurements have been studied in the context

of data-driven control [74]. On the one hand, indirect data-driven control methods

require the two-step procedure of first deriving a data-based system representation

and subsequently applying model-based control techniques. On the other hand, direct

data-driven control refers to directly deducing controllers from data.

System identification techniques together with a model-based controller design con-

stitute a well-established indirect data-driven control method, where a model can be

obtained from data by a large bundle of different approaches [14, 92, 116]. To ensure

guarantees for the resulting closed loop, a model together with a bound for the es-

timation mismatch need to be deduced. However, determining the mismatch in the

scenario of finite noisy data is challenging even for LTI systems [161]. For stochastic

noise, promising directions include the works [102, 122, 147], where the study of non-

asymptotic guarantees still requires strong assumptions on the data and noise. For
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instance, [122] asks for Gaussian iid noise and input as well as a zero initial condition.

In case of bounded deterministic noise, set-membership identification [108] strives to

identify a model and to estimate an error bound from the set of all LTI systems which

could generate the measured trajectories. For identifying nonlinear systems, the set-

membership methodology is also applicable by means of a Lipschitz approximation

[107], but may lead to complex models. Furthermore, the literature covers approaches

tailored for special classes of nonlinear systems [184], requiring an appropriate function

basis [148], or using deep neural networks [93]. While these approaches can perform

well in practice, they rarely come with guarantees for their approximation error.

Avoiding the intermediate step of identifying a model and bounding its mismatch,

direct data-driven control techniques include PID control [191], adaptive control [15],

iterative feedback tuning [73], virtual reference feedback tuning [37], reinforcement

learning [32], unfalsified control [135], and subspace-based LQG-control [56]. We also

refer to the survey [74] and the references therein. Despite their empirical success,

most of these approaches do not provide theoretical guarantees, and thus may result

in unpredictable closed-loop behavior [130]. However, the rising interest in reliable

data-driven control approaches since the publication of the survey [74] have led to new

methods establishing a comprising framework for data-driven control of LTI systems.

More specifically, the behavioral viewpoint led to the fundamental lemma [183], which

achieves a simple algebraic condition with a Hankel matrix of a measured trajectory

to parametrize all possible trajectories of the underlying system. Therefore, this non-

parametric system representation has inspired direct data-driven state feedback control

[52], predictive control [18, 47], and more [101]. Besides Willems’ fundamental lemma,

data informativity [177, 178] specifies when noisy data enable to draw conclusions

concerning dissipativity, stabilizability, etc., which requires in general less data than

system identification. Equivalently to the set-membership methodology [60], the data

informativity framework is also based on the set of all systems explaining the noisy

data. The combination of set membership and modern robust control techniques is

exploited in [41] to render an unknown LTI system (super-)stable using noisy input-

output data by linear programming.

An intermediate approach between system identification and a controller synthesis

directly from data is the verification of control-theoretic input-output properties, for

instance, dissipativity [182] or IQCs [105]. On the one hand, the system behavior is ex-

pressed by the verified properties, which enables a controller synthesis by well-studied
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feedback laws [53, 80, 137, 164, 187], e.g., the small-gain theorem or the interconnection

of passive systems. The obtained controllers attain closed-loop guarantees for stability

and robustness. Thus, determining system properties can be beneficial compared to

identifying a complex model not suitable for a controller synthesis. On the other hand,

these properties offer valuable insights into the system. For instance, NLMs according

to [3, 4, 54, 65, 118, 145, 149] quantify the strength of the nonlinearity of a dynamical

system, and thus give an intuition whether a linear controller design can be successful.

Simultaneously, determining these NLMs includes the calculation of the ‘best’ linear

approximation of the nonlinear input-output behavior, which might be preferable as

a linear surrogate model over the Jacobi-linearization. Similar to direct data-driven

control, most works on data-driven system analysis with theoretic guarantees are re-

stricted to LTI systems including iterative sampling schemes [83, 179], the behavioral

viewpoint [103, 131], and the data informativity framework [81, 177].

While Willems’ fundamental lemma and the data-informativity framework build a

fruitful basis for developing data-driven control methods with rigorous guarantees for

LTI systems, data-driven control of nonlinear systems comes with additional chal-

lenges. First, the nonlinearity of the unknown dynamics precludes guarantees for the

identification with deterministic error bounds from finitely many samples. Therefore,

additional assumptions are required, e.g., a function basis containing the dynamics

recovered from first principles. Consequently, the data-driven inference relies not only

on the data’s informativity but also on the accuracy of the prior knowledge. This

corresponds to a second challenge. Third, even if a suitable function basis is avail-

able analyses such as the estimation of the region of attraction or a controller design

with performance guarantees involve nonconvex optimization. This usually prevents

an efficient numerical solution. Summarizing, due to the mentioned challenges, many

data-driven control approaches of nonlinear systems lack rigorous guarantees for finite

noisy data, call for nonconvex optimization, or require an appropriate function basis

containing the underlying dynamics.

These drawbacks motivate the data-driven control framework for nonlinear systems

presented in this thesis. Within this framework, we can solve control-related problems

that are demanding even under precise knowledge of the nonlinear dynamics. To

this end, we introduce a novel system representation consisting of a set membership

for polynomial approximation, which can be obtained from noisy data. Thereby, we

can determine system-theoretic properties, e.g., dissipativity and NLMs, and design
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state-feedback controllers without identifying a model and estimating its error. Due

to the polynomial description of the system representation, the verification of system

properties and the design of controllers satisfying performance criteria boil down to

effectively solvable SDPs.

1.2 Related work

Within the challenging research field of data-driven control for nonlinear systems,

many research efforts have been made and a variety of approaches has been devel-

oped. For the sake of presentation, we concentrate on data-based methods providing

guarantees. Note that this section is taken in parts literally from [TM10]1.

Data-driven control techniques with guarantees include nonlinear adaptive control

[13]. However, the successful application of adaptive control calls for persistently ex-

citing closed-loop trajectories, which can be challenging in some applications. The

field of learning-based model predictive control [71] provides a flexible framework with

rigorous guarantees, but requires nonconvex optimization during runtime. Probabilis-

tic guarantees are ensured in reinforcement learning with safety guarantees [23] and

stability verification [89] using scenario optimization [36]. Both ask for nonconvex

optimization for general nonlinear systems and iid sampled data. Furthermore, neural

networks are employed in [112] for stability guarantees by learning the dynamics, the

controller, and a Lyapunov function at the same time. However, an obscure approx-

imation error of the neural networks are required together with a large amount of

samples. Lipschitz approximation of nonlinear systems has been leveraged for a wide

range of data-driven system analysis and control problems. To resolve the requirement

of nonconvex optimization, a stream of research has investigated data-based system

representations for nonlinear systems suitable for a controller design by convex opti-

mization formulated as SDPs. Due to their connection to our framework, data-driven

control design by Lipschitz approximation and SDPs are discussed in more detail in

the following.

1T. Martin, T. B. Schön, and F. Allgöwer. “Guarantees for data-driven control of nonlinear
systems using semidefinite programming: A survey.” In: Annual Reviews in Control 56
(2023), p. 100911.
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1.2 Related work

Lipschitz approximation

The key idea is that, under a known Lipschitz constant of an unknown function, we

can construct a cone for each sample point containing the graph of this function. Thus,

the intersection of cones from multiple samples constitutes a non-parametric envelope

around the function. For that reason, this representation circumvents the need to first

choose a parametrized model and can be utilized for various control-related problems

as summarized in the sequel.

In nonlinear set-membership identification [107, 114], an optimal envelope contain-

ing the to-be-estimated nonlinear dynamics is obtained from the non-parametric rep-

resentation. Thus, a guaranteed robust prediction of the system behavior is possible.

This can be leveraged, for instance, in learning-based model predictive control [71].

In addition, the set of all feasible functions enables to derive an estimation of the un-

known function together with its worst-case identification error. In machine learning,

equivalent results have been presented as Kinky inference for learning and predicting

unknown nonlinear functions [34] (Chapter 4). Therein, also extensions for employing

local data [29] and Hölder continuous functions are suggested. Due to their relevance,

a manifold of validation procedures has been proposed for estimating Lipschitz or

Hölder constants of unknown nonlinear functions from data [35, 107].

In the context of data-driven system analysis, the Lipschitz constant together with

input-output tuples of the input-output mapping of an unknown nonlinear system are

employed in [113] to infer the L2-gain, the shortage of passivity, and a cone. This idea

is further analyzed regarding the sample complexity [146] and more general dissipation

inequalities [TM6, 132]. All these approaches require to estimate the covering radius

for the input space, which measures how densely the input space is sampled. Alter-

natively, [TM5] directly exploits local Kinky inferences of the input-output mapping

to determine its gain. There, not only data from storage are employed but also an

iterative sampling scheme is proposed to reduce the sample complexity.

Besides learning-based model predictive control, the set membership from Lipschitz

approximation has also been applied for online control approaches [157], model ref-

erence adaptive control [34] (Section 4.4), and offline direct controller design [119].

In contrast to offline approaches, an online approach has the advantage that also

currently measured data can be incorporated to refine the control performance but

requires more computation during runtime.
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The downside of Lipschitz approximations usually is the excessive demand of sam-

ples. For instance, the inference of system properties requires thousands of experiments

[113]. This makes the approach rather impractical. Moreover, the obtained insights on

the system properties only hold for a data-dependent finite horizon, whereas the feed-

back laws [53, 80, 137, 164, 187] call for an arbitrarily long horizon. The data-based

system representation proposed in Chapter 4 generalizes Lipschitz approximation to-

wards data-driven polynomial approximation, and thereby resolves these drawbacks.

State-feedback design based on SDPs for nonlinear systems

Gaussian processes and kernel ridge regression constitute a flexible framework to ap-

proximate nonlinear functions in machine learning and nonlinear dynamics in system

identification. Both regression methods include the possibility for incorporating prior

knowledge and inherent uncertainty measures to derive guarantees for data-driven con-

trol. However, the obtained system representation is often strongly nonlinear due to

nonlinear kernel functions. To deal with this nonlinearity, [163] presents a controller

design by feedback linearization and [38] by backstepping. However, the former re-

quires that the input enters the dynamics via an invertible, known, and state-depended

matrix. The latter calls for a structure of the dynamics typical for backstepping. Based

on [59], the same authors of [58] obtain a linear sector for the nonlinear parts of the

dynamics from a Gaussian process to apply linear robust control afterwards. Instead of

bounding the mismatch of the kernel regression by a sector, [22] directly computes the

Jacobian linearization of the nonlinear Gaussian-process-model around an equilibrium

point for a linear robust controller design. Alternatively, [77] suggests to stabilize the

linear part of a kernel regression, while approximately cancelling its nonlinearity by

an SDP as in [51]. The work [55] proposes to use polynomial kernels yielding a poly-

nomial regression model and a polynomial sector for the approximation error. Thus,

a system analysis and a controller design by SOS techniques are possible. Related to

these results, [133] determines passivity properties via Gaussian process optimization,

which then facilitates an active sampling scheme to improve the data-driven inference

of the system property. In summary, these works require a certain structure of the

dynamics or conclude on a polynomial approximation of the dynamics using Gaussian

processes or kernel ridge regression. In contrast, we present in Chapter 4 a direct

manner to infer polynomial approximations from data, which thus circumvents the

regression error.
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