Contents

Ał	ostrac	et							iii
Ac	cknow	ledgem	ents						v
Li	st of I	Figures							xi
Li	st of 🛛	Fables							XV
Gl	lossar	у							xvii
Li	st of S	Symbols	5						xix
1	Intr	oductio	n						1
	1.1	Purpos	e of the Work				•		2
	1.2	Thesis	Outline				•		2
	1.3	Contri	butions				•		4
	1.4	List of	Publications		•	•	•	•	6
2	The	oretical	Background						9
	2.1	Biolog	ical Cells				•		11
		2.1.1	The Eukaryotic Cell				•		11
		2.1.2	Cellular Membrane	•			•		14
	2.2	Electri	cal Properties of Biological Systems	•			•		15
	2.3	Electri	cal Impedance Spectroscopy	•			•		19
		2.3.1	Mathematical Concept of Impedance		•		•		19
		2.3.2	Graphical Representation of Impedance Data	•			•		21
		2.3.3	Electrical and Electrochemical Circuit Elements		•		•		22
		2.3.4	Conditions for Valid EIS Data	•	•	•	•	, .	25

3	Deve	elopme	nt of a Four Electrode Terminal Chamber System	27	
	3.1	Electro	ode Polarization in Low Frequencies	28	
		3.1.1	Interfacial Capacitance	28	
		3.1.2	Charge Transfer Resistance	31	
		3.1.3	Warburg Impedance for Diffusion Modelling	32	
		3.1.4	Solution Resistance	32	
		3.1.5	Equivalent Circuit of Electrode-Electrolyte Interface	33	
	3.2	Measu	rement Systems and Electrodes Setup	34	
		3.2.1	Two-Electrode Measurement System	36	
		3.2.2	Three-Terminal Measurement System	37	
		3.2.3	Four-Terminal Measurement System	38	
	3.3 Detailed ECM of the Experimental Setup			39	
	3.4	Design	ned System	41	
	3.5	Comp	arison 4T vs. 2T Measurements	44	
	3.6	Source	e of Artifacts in Low Frequency Impedance Experiments	46	
4	Арр	lying E	IS to Cancer Cells Suspensions	47	
	4.1	Introd	uction	47	
		4.1.1	Normal Cell Lines	49	
		4.1.2	Prostate Cancer Cell Lines	50	
		4.1.3	Leukemia Cell Lines	51	
		4.1.4	Colon Cancer Cell Lines	53	
		4.1.5	Breast Cancer Cell Lines	54	
	4.2	Experi	rimental Procedure		
	4.3 Experimental Results			56	
		4.3.1	Impedance Magnitude and Phase Curves Using the 320 μL Cham-		
			ber	56	
		4.3.2	Metastatic versus Non-Metastatic Cancers	62	
		4.3.3	Comparison of the Impedance Spectrum from Different Cell Lines	67	
		4.3.4	Cell Sizes	69	
	4.4	Sugge	stions for Future Experiments	70	
		4.4.1	Use a Temperature Controlled Box	70	
		4.4.2	Measure Cells Shortly After Detachment	71	
		4.4.3	Perform Only Few Experiments per Day	72	
		4.4.4	Use Preferably New Electrodes	72	
		4.4.5	Use Small Voltage Signals	73	
		4.4.6	Do not apply a DC potential to impedance experiments	73	
	4.5	Conclu	usions	74	

5	Measuring the Cell Surface Charge		
	5.1	Introduction	75
	5.2	Low Frequency Dispersion of Colloidal Particles Suspended in Electro-	
		lyte Solutions	76
	5.3	Dimensional Analysis of Equation 5.7	81
	5.4	Correction of Schwarz Model to 4T Experiments	82
	5.5	Experimental Results: Calculation of the Cell Surface Charge	85
	5.6	Comments on Schwarz Theory	88
	5.7	Conclusions	89
6	Mea	asuring Adherent Cells	91
	6.1	Introduction	91
	6.2	Theoretical Background	92
		6.2.1 Working Principle	93
		6.2.2 Presence of the Double Layer	94
		6.2.3 Equivalent Circuit Model to Analyse the Cells Attached to Inter-	
		digitated Electrodes	94
	6.3	Experimental Procedure	97
	6.4	Experimental Results	100
		6.4.1 Cell Attachment and Growth	100
		6.4.2 Evaluating Chemotheraphy Effects	101
	6.5	Conclusions	104
7	Spe	ctral Response of Healthy Tissues and Solid Tumors	107
	7.1	Theoretical Background	107
	7.2	Spectral Response of Healthy Tissues	109
	7.3	Tumor Composition and Organization	112
	7.4	Main Structural Differences Between Tumor and Healthy Tissues	114
	7.5	Comparison Tumor vs. Healthy Tissues Spectral Response	117
		7.5.1 Experimental Setup	117
		7.5.2 Experimental Results	118
	7.6	Conclusions	123
8	Con	nclusions and Future Work	135
	8.1	Summary and Conclusions	135
	8.2	Recommendations and Guidelines	137
	8.3	Future Work	138

Α	Arcl	nitecture proposal of a 4T impedance measurement system	141	
	A.1	A.1 Macro view of the impedance measurement system		
		A.1.1 Oscillator	142	
		A.1.2 Potentiostat	143	
		A.1.3 Principles of lock-in detection	145	
		A.1.4 Front-end and complete system	147	
	A.2	Conclusions	147	
B	Can	cer metabolites identification	153	
	B .1	First method: membrane system to separate different types of ions	153	
		B.1.1 Step A: identify body fluids	154	
		B.1.2 Step B: choose one body fluid	154	
		B.1.3 Step C: identify metabolite chemical formula	154	
		B.1.4 Step E: calculate the molecular size of the metabolite	155	
		B.1.5 Design membrane system to separate metabolite	158	
		B.1.6 Conductivity measurement of different compartments	160	
		B.1.7 Calculate metabolite concentration	162	
		B.1.8 Comments about the method	163	
	B.2	Second method: surface modified interdigitated electrodes	163	
С	Extr	racting $\Delta arepsilon_{lpha}$ from impedance measurements	165	
	C.1	Equivalent circuit model	166	
	C.2	Fitting the experimental data	167	
	C.3	Extracting $\Delta \varepsilon_{\alpha}$	168	
	C.4	Example of fitting PC-3 cells experiments to extract $\Delta \varepsilon_0$	169	
Co	mple	te Table Cell Surface Charge	173	

Bibliography

175