
Abstract

This thesis presents methods that use model reduction to reduce the complexity
of a dynamical model to a practicable level. In addition to procedures for model
reduction, we introduce algorithms for bounding the error between the detailed and
reduced model as well as predictive control using reduced models for prediction.
All approaches provide guarantees either for the reduced model or while using the
reduced model. At the same time, we mind the computational tractability of the
procedures. The applicability of the proposed methods is demonstrated by means
of a nonisothermal tubular chemical reactor.

The first contribution is a model reduction procedure to approximate the input-
output map of continuous-time nonlinear ordinary differential equations. The
reduced model is parameterized with the observability normal form. Using a
sample of simulated input-output trajectories, the parameters are computed by
convex optimization. A low complexity of the functional expression is promoted by
sparsity enhancing `1-minimization. In addition, we extend the method to preserve
the location and local exponential stability of multiple steady states.

Furthermore, we improve an existing a-posteriori bound of the model reduction
error for linear models. The generalized error bound is given by an asymptoti-
cally stable scalar ordinary differential equation, which results, in general, in a
considerably tighter bound with a comparable computational demand.

Finally, we propose a novel model predictive control scheme using reduced models
for linear time-invariant systems. This model predictive control scheme uses the
developed bound of the model reduction error to guarantee asymptotic stability as
well as satisfaction of hard input and state constraints despite the error between the
reduced model used for the prediction and the high-dimensional plant. Moreover,
we show that the proposed model predictive control scheme minimizes the infinite
horizon cost functional for the plant for a common choice of design parameters. In
this case, the proposed scheme ensures an upper bound for the cost functional value
of the closed loop with the detailed plant model despite using a reduced model for
the prediction. For discrete-time plants we show that the optimization problem of
the model predictive control scheme can be reformulated as a second-order cone
program.
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Deutsche Kurzfassung

In dieser Arbeit werden verschiedene Methoden entwickelt, die durch den Einsatz
von Modellreduktion die Komplexität eines dynamischen Modells beherrschbar
machen. Neben einem Verfahren für die Modellreduktion stellen wir sowohl einen
Algorithmus für die Beschränkung des Fehlers zwischen dem detaillierten und
dem reduzierten Modell als auch eine Methode für die modellprädiktive Regelung
basierend auf einem reduzierten Modell vor. Für alle Ansätze leiten wir Garantien
entweder für das reduzierte Modell oder für die Verwendung des reduzierten
Modells her. Gleichzeitig achten wir darauf, dass die entwickelten Algorithmen mit
derzeitigen Computern gelöst werden können. Die Anwendbarkeit der Methoden
wird anhand eines nicht-isothermen chemischen Rohrreaktors demonstriert.

Als erste Methode schlagen wir ein Verfahren vor, das das Ein-/Ausgangsverhalten
einer zeitkontinuierlichen nichtlinearen gewöhnlichen Differentialgleichung approxi-
miert. Das reduzierte Modell wird mit der Beobachternormalform parametrisiert.
Basierend auf einer Stichprobe von simulierten Ein-/Ausgangstrajektorien sind
die Parameter durch die Lösung eines konvexen Optimierungsproblems bestimmt.
Eine geringe Komplexität der Funktion des reduzierten Modells wird durch eine
`1-Minimierung erreicht. Darüber hinaus erweitern wir die Methode, so dass die
Position und lokale exponentielle Stabilität der stationären Zustände erhalten
bleiben.
Außerdem verbessern wir eine bestehende a-posteriori Schranke für den Mo-

dellreduktionsfehler für lineare Modelle. Die verallgemeinerte Fehlerschranke wird
durch eine asymptotisch stabile skalare gewöhnliche Differentialgleichung beschrie-
ben und führt, im Allgemeinen, zu einer deutlich genaueren Schranke mit einem
vergleichbaren Rechenaufwand.

Weiterhin stellen wir ein neuartiges modellprädiktives Regelungsverfahren ba-
sierend auf reduzierten Prädiktionsmodellen für lineare zeitinvariante Systeme
vor. Das entwickelte Verfahren verwendet die verallgemeinerte Schranke für den
Modellreduktionsfehler, um asymptotische Stabilität sowie die Einhaltung von
Eingangs- und Zustandsbeschränkungen trotz der Abweichung zwischen dem re-
duzierten Prädiktionsmodell und dem detaillierten Streckenmodell zu garantieren.
Zudem beweisen wir für eine übliche Wahl von Entwurfsparametern, dass das
modellprädiktive Regelungsverfahren, trotz des reduzierten Prädiktionsmodells,
das Kostenfunktional für die Strecke minimiert und eine obere Schranke für den
Wert des Kostenfunktionals des geschlossenen Kreises mit der Strecke gewährleistet.
Für zeitdiskrete Strecken zeigen wir, dass das Optimierungsproblem des modell-
prädiktiven Regelungsverfahrens in ein Second-Order Cone Programm umgeformt
werden kann.
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Chapter 1

Introduction

1.1 Motivation

In the industrial environment, model predictive control (MPC) is getting more
and more popular. Two reasons are the increasing computational power and more
demanding performance requirements for controlled systems. The latter results
in more difficult control task, which render the well-known proportional-integral-
derivative control inappropriate.

MPC uses a model of the plant for the prediction. Based on a specified cost
criterion, the control inputs are computed such that this cost criterion is minimal
for the predicted behavior. To ensure robustness with respect to a model plant
mismatch and measurement noise a feedback is introduced by measuring the
current state and recomputing the optimal control inputs repeatedly. MPC is
well studied in the academic environment leading to important theoretical results
including rigorous stability proofs. Furthermore, MPC is successfully applied
in numerous industries ranging from, e.g., process industry to electrical power
conversion and automotive industry. This success is based on the advantages
of MPC. MPC can be applied to many plants including nonlinear models and
multiple inputs. Moreover, hard input as well as state constraints can be easily
incorporated. Furthermore, a time domain performance criterion is approximately
minimized.
For MPC, typically the solution of an optimization problem in real time is

required. Hence, a computationally tractable prediction is essential for the applica-
tion of MPC. Moreover, the requirements for controlled systems are continuously
increasing, which results in more complex models. For example, the required fast
adaption of production targets in the chemical industry to the market demand
necessitates more frequent load changes [Agar et al., 2017], which calls for models
that represent a whole operation regime and not only the area around one particular
steady state. Or the desired increase in energy efficiency of chemical processes
to reduce the CO2 footprint results in more couplings between the reactors, e.g.,
by using the waste heat of one reactor for another reaction [Agar et al., 2017].
Another example is the increasing share of renewable energies in the power grid,
which leads to an increase in complexity of the controlled system. This increase
in model complexity makes the solution of the optimization problem in real time
computationally challenging.
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Chapter 1 Introduction

One remedy described in numerous articles is the use of reduced models for
the prediction. Model reduction algorithms for nonlinear systems are much less
developed than for linear systems. Furthermore, the complexity of the functional
expression of the ordinary differential equation (ODE) is limited by the model
order for linear time invariant (LTI) models but not for nonlinear models (compare
with [Rewieński, 2003, Section 2.3]). Hence, we cover methods that reduce the
order and complexity of nonlinear models.

Due to the mismatch between the reduced model and the plant, constraint
satisfaction and stability of the closed loop are not guaranteed any more. To
recover the important guarantees of MPC, it is essential to take the error of the
model reduction into account. An intermediate step towards an MPC approach
with robustness against the model reduction error is a bound for the error between
the original and the reduced model while simulating the reduced model. There are
only few results for MPC using reduced models that provide guarantees for the
closed loop with the plant even for LTI systems. Hence, a bound for the model
reduction error and an MPC approach using reduced models are developed for
LTI systems.

Altogether, in this thesis we focus on three research directions. First, model
reduction procedures that result in models with a reduced order and reduced
complexity. Second, bounds for the model reduction error that can be utilized
during simulation. Third, MPC using reduced models with a guaranteed behavior
of the closed loop with the original model. For the last research direction, the
fields model reduction, error bounds, and MPC have to be combined as visualized
in Figure 1.1.

A connection between all methods developed in this thesis are reduced models
that are either computed by model reduction methods or used in MPC schemes.
In addition to the connection in form of reduced models, the methods proposed in
this thesis are motivated by two shared features, which are, inter alia, important
for the applicability in industry: computational efficiency and rigorous guarantees.
For the model reduction methods, the aspect of computational complexity appears
twice: the procedure needs to be computationally tractable and the resulting
models possess a low complexity. Guarantees for the model reduction are, e.g.,
preservation of stability. By simply using reduced models it is unclear how the
approximation error deteriorates the application at hand. Hence, it is crucial to
provide rigorous bounds for the error between the original and the reduced model.
For these bounds, it is important to establish a good compromise between a low
computational complexity and a small conservatism. For MPC using reduced
models the common guarantees of nominal MPC such as constraint satisfaction,
bounds for the cost functional value, and asymptotic stability should be recovered.
The computational efficiency shows up for MPC by using reduced models, error
bounds with a low computational burden, and the way these ingredients are
combined in the optimization problem.
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Model reduction
for nonlinear systems:

complexity, stability
(Chapter 3)

Error bound:
computational demand,

conservatism

MPC:
constraint satisfaction,
performance, stability

MPC using
reduced models with
guaranteed properties
for linear systems

(Chapters 5–6)

Simulation using
reduced models with

guaranteed uncertainty
for linear systems

(Chapter 4)

Figure 1.1: Research directions and aspects from each research field covered in
this thesis.

1.2 Overview of the Research Area

In the last section, the three research areas of this thesis have been motivated:

i) model reduction

ii) error bounds for simulation using reduced models

iii) MPC using reduced models

In this section, we give a brief overview of related work in this three research areas
and challenges that are addressed in this thesis. Hereby, we provide the basis for
the contributions of this thesis, which are stated in Section 1.3.

An introduction into the three research areas is given in Chapter 2. If few prior
knowledge of one research area exist, it is beneficial to read the corresponding
section of Chapter 2 before this section.
Small parts of Section 1.2.2 and 1.2.3 have already been presented in [Löhning

et al., 2014].
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1.2.1 Model Reduction

In this section, we give a brief overview of the field of model reduction. For a more
thorough introduction we refer for linear model reduction to [Antoulas, 2005a,b;
Baur et al., 2014; Benner et al., 2015, 2017; Besselink et al., 2013; Obinata and
Anderson, 2001] and for nonlinear model reduction to [Baur et al., 2014; Marquardt,
2002; Ðukić and Sarić, 2012].

For linear systems, well-developed methods for model reduction are described in
the literature.
The well-known method of balanced truncation introduced in [Moore, 1981;

Mullis and Roberts, 1976] uses a state space realization in which each state is as
well controllable as it is observable. Then the states that are simultaneously difficult
to observe and difficult to control are truncated. A survey of model reduction by
balanced truncation can be found in [Gugercin and Antoulas, 2004]. Under mild
assumptions, balanced truncation preserves stability [Pernebo and Silverman, 1982]
and an error bound [Enns, 1984; Glover, 1984] exists. Furthermore, it has been
generalized to unstable [Kenney and Hewer, 1987; Therapos, 1989; Zhou et al.,
1999] systems, passivity preservation [Desai and Pal, 1984], and frequency-weighted
balanced truncation [Enns, 1984]. Closely related to balanced truncation is the
Hankel norm approximation developed by Glover [1984].

Another established method is moment matching, which finds a reduced model
that matches the first derivatives of the transfer function at a certain number
of points. In the 1990s, numerically efficient algorithms have been developed for
moment matching [Feldmann and Freund, 1995; Grimme, 1997; Odabasioglu et al.,
1998]. Algorithms are available for preserving passivity [Odabasioglu et al., 1998].
Further details can be found, e.g., in [Benner et al., 2017, Chapter 7] and [Antoulas,
2005b; Freund, 2003].

A frequently used model reduction method is modal truncation [Antoulas, 2005a;
Varga, 1995]. Modal truncation utilizes the eigenvalue decomposition of the
state matrix and preserves the nR dominant poles in the reduced model. Several
measures for the dominance of poles exist, e.g., distance from the imaginary
axis or the Hankel singular values of the subsystems corresponding to each block
of the state matrix [Varga, 1995]. Another method is the proper orthogonal
decomposition (POD) [Holmes et al., 1996; Lumley, 1967; Rathinam and Petzold,
2003; Sirovich, 1987], which uses state trajectories to compute a subspace on which
the detailed model model is projected. For more details of the POD we refer to
Section 2.1.2. Both, the modal truncation as well as the POD are applicable to
high-dimensional dynamical system.
Optimization based approaches to model reduction connected to the POD are

proposed in [Bui-Thanh et al., 2007; Kunisch and Volkwein, 2008]. Bui-Thanh
et al. take the ODE of the reduced model into account in the computation of
the subspace used for projection. Kunisch and Volkwein consider the case that
the reduced model is used for optimal control and consider the dependence of the
subspace used for projection on the control input.
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The above methods for linear model reduction rely on a projection of the
detailed model as discussed below in Section 2.1.1. If the internal dynamics
are unknown and only input/output (I/O) data is available, e.g., a time-domain
Loewner approach [Peherstorfer et al., 2017] or transfer function fitting [Sootla,
2013; Sou et al., 2008] can be used.

In contrast to model reduction for linear systems, model reduction for nonlinear
systems is much less developed [Benner et al., 2015]. Many model reduction methods
for nonlinear systems are extensions of methods for linear systems [Baur et al.,
2014], e.g., balanced truncation [Fujimoto and Scherpen, 2010; Scherpen, 1993] and
moment matching [Astolfi, 2010; Ionescu and Astolfi, 2016]. Unfortunately, both
methods require the solution of partial differential equations (PDEs). Hence, they
are computationally involved. A remedy for balanced truncation is the empirical
balanced truncation [Kawano and Scherpen, 2017; Lall et al., 2002; Pallaske,
1987]. Empirical balanced truncation as well as the POD require trajectories
generated by simulation and rely on a linear projection. But, according to Gu
[2011], “nonlinear projection is natural and appropriate for reducing nonlinear
systems, and can achieve more compact and accurate reduced models than linear
projection”. The extensions of balanced truncation [Fujimoto and Scherpen, 2010;
Scherpen, 1993] and moment matching [Astolfi, 2010; Ionescu and Astolfi, 2016] to
nonlinear systems can be interpreted as a nonlinear projection. But these methods
are computationally challenging.
There exist several methods relying on a linear mapping between the states of

the detailed and reduced model. The nonlinear Galerkin projection [Matthies and
Meyer, 2003] assumes a (linear) subspace for the dominant states. The nonlinear
Galerkin projection results in a differential algebraic equation (DAE). In contrast
to the empirical balanced truncation and the POD performing a transformation
followed by truncation, the nonlinear Galerkin projection is strongly connected to
residualization, which also results in a DAE as discussed briefly in Section 2.1.1. The
trajectory piecewise linear approximation [Rewieński and White, 2006] linearizes
the nonlinear system around several points in the state space. Then, the nonlinear
system is approximated with a weighted sum of the linear systems. The order
reduction is done by a projection of this sum of the linear systems onto one (linear)
subspace. Gu [2009] suggests a method that deduces an equivalent quadratic-linear
DAE first, which is then reduced using a linear projection.
The above cited methods either utilize a linear mapping between states of the

detailed and the reduced model or a nonlinear transformation, which is difficult to
compute. Alternative approaches rely on data sampled from trajectories. Lohmann
[1994] presented a model reduction procedure assuming that the dominant states
are known and the nonlinearity is kept in the reduced model. The linear couplings
between the state variables and the nonlinear functions are computed by minimizing
the equation error. Another optimization based approach proposed in [Bond et al.,
2010] allows to, first, utilize a reduced order training set of the states computed by
a linear projection and, second, enforce incremental stability. The reduced basis
methodology provides a framework for iteratively adding new trajectories to the
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training set (known as greedy sampling) and algorithms yielding a basis used for
projection [Haasdonk and Ohlberger, 2008]. In [Wood et al., 2004], derivatives
of I/O data up to the second-order are used to determine an implicit nonlinear
ODE. Vargas and Allgöwer [2004] presented a procedure that is applicable to
systems admitting a discrete-time Volterra representation and suggested an iterative
approach for the construction of the reduced model. In this thesis, we build upon
the work in [Lohmann, 1994; Vargas and Allgöwer, 2004; Wood et al., 2004].

Above, the aspects of a small approximation error and computational efficiency
of the procedure are discussed. Another important issue of a model reduction pro-
cedure is preserving properties of the model such as stability or passivity [Antoulas,
2005b; Astolfi, 2010] and thereby providing guarantees for the model reduction
procedure. For nonlinear systems, preserving local asymptotic stability of the
equilibrium was shown for balanced truncation [Scherpen, 1993]. For moment
matching conditions exist that ensure a locally asymptotically stable equilibrium
for the reduced model [Astolfi, 2010; Ionescu and Astolfi, 2016]. Local asymptotic
stability of the equilibrium is preserved for the POD if the detailed model is
appropriately transformed in advance [Prajna, 2003]. For the trajectory piecewise
linear approximation small-signal finite-gain Lp stability can be guaranteed [Bond
and Daniel, 2009]. Model reduction preserving incremental stability is covered
in [Besselink, 2012; Bond et al., 2010]. For incremental stable systems, state
trajectories corresponding to a given input signal converge to each other [Angeli,
2002]. Hence, systems with multiple equilibria considered in Section 3.3 cannot be
handled by incremental stability.

Another important issue is the computational complexity of the reduced model.
For model reduction of linear systems the order of the model is often used as
measure for model complexity. For general nonlinear systems, applying a linear
projection reduces the order of the model but the complexity of the nonlinear
expression remains similar. Hence, for nonlinear model reduction the complexity
of the functional expressions is also important [Astolfi, 2010; Ionescu and Astolfi,
2016]. Simplification of the nonlinear expression before a linear projection can be
achieved by a Taylor series expansion, which allows to compute the coefficients of
the polynomials offline [Phillips, 2003]. Using the trajectory piecewise linear approx-
imation [Rewieński and White, 2006] also results in a simplification of the nonlinear
expression since it results in a weighted sum of linear systems. Furthermore, to
reduce the complexity of the nonlinearity the empirical interpolation [Barrault
et al., 2004; Chaturantabut and Sorensen, 2010; Drohmann et al., 2012b; Haasdonk
et al., 2008; Peherstorfer et al., 2014] has been proposed.

1.2.2 Bounds for the Error of Model Reduction

Using a reduced model for simulation introduces uncertainty due to the mismatch
between the detailed and reduced model. For the application of the reduced model
it is important to quantify the uncertainty, especially in safety critical situations.
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In the model reduction community several bounds for the model reduction error
are known that are satisfied for all inputs. For linear systems, an a-priori error
bound exists for balanced truncation with zero initial condition [Enns, 1984; Glover,
1984] and inhomogeneous initial condition [Baur et al., 2014; Heinkenschloss et al.,
2011]. Error bounds for moment matching are proposed in [Panzer et al., 2013;
Wolf et al., 2011]. In contrast to the a-priori error bounds, the a-posteriori error
bounds are applicable after the reduced model has been computed. An a-posteriori
error bound for stable (parameterized) linear ODEs is presented in [Haasdonk
and Ohlberger, 2011]. In [Haasdonk and Ohlberger, 2011], the error is bounded
by a scalar ODE, which depends only on the input and state of reduced model.
Hence, this error bound takes the input trajectory into account. But the error
bound monotonically increases with time. This is overcome by the generalized error
bound introduced in [Ruiner et al., 2012]. For this error bound, the computational
demand in the offline phase can be reduced significantly [Grunert et al., 2020].
Unfortunately, the error bound of [Grunert et al., 2020; Ruiner et al., 2012] requires
the computation of a convolution integral for every time point since it cannot
be written as an ODE. This significantly increases the computational demand.
A-posteriori bounds for the error of the transfer function have been presented
in [Antoulas et al., 2018; Feng et al., 2017]. These a-posteriori error bounds can be
used to refine the reduced model [Antoulas et al., 2018].
A-posteriori error bounds exist also for nonlinear systems. For the trajectory

piecewise linear approximation of stable systems an error bound is introduced
in [Rewieński and White, 2003]. An error bound for the Galerkin projection with
a POD basis is presented in [Volkwein, 2011]. An error bound for any projection
based model reduction and approximation of the nonlinearity with the discrete-
empirical interpolation method is introduced in [Wirtz et al., 2014]. Furthermore,
an error bound for incremental balanced truncation exist [Besselink, 2012].

When reduced models are used for MPC as considered in the subsequent section,
several error bounds have been utilized. Narciso and Pistikopoulos [2008] proposed
to use the a-priori error bound of balanced truncation. In [Dubljevic et al., 2006],
the model reduction method is limited to modal truncation, where the states of the
reduced model and the neglected dynamics are only coupled by the input. Then,
input-to-state boundedness of the error system is exploited to establish a constant
error bound. In [Kögel and Findeisen, 2015; Lorenzetti et al., 2019; Sopasakis
et al., 2013], the error bounds are based on robust positive invariant sets while
no assumptions on the model reduction method are stated. Kögel and Findeisen
[2015] compute, in a first step, box constraints for the error of the performance
output and the error in the dynamics of the estimated states of the reduced model.
These box constraints bound these errors for all possible trajectories in a chosen
time interval. In a second step, these box constraints are utilized to compute a
robust positive invariant set for the estimated state of the reduced model. Finally,
the error bounds on the input and performance output are established using the
box constraints and the robust positive invariant set. In [Lorenzetti et al., 2019]
the error bounds are directly computed based on the given dynamics. This results
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in less conservative error bounds. In the recent publication [Lorenzetti and Pavone,
2019], an error bound is proposed that bounds the contribution from the most
recent time interval by polytopic sets and all prior contributions by the a-posteriori
error bound presented in our work [Löhning et al., 2014]. To compute the polytopic
set, all inputs and states in a bounded set are taken into account. To allow for the
a-posteriori error bound, a projection-based model reduction method is assumed
in [Lorenzetti and Pavone, 2019]. Altogether, in [Dubljevic et al., 2006; Kögel and
Findeisen, 2015; Lorenzetti and Pavone, 2019; Lorenzetti et al., 2019; Narciso and
Pistikopoulos, 2008; Sopasakis et al., 2013], only error bounds that are fulfilled for
all inputs or all inputs and states in a bounded set have been utilized for MPC
using reduced models. Hence, the known input and state of the reduced model
is not taken into account in the prediction of the error bound, which, in general,
results in a considerable conservatism.

1.2.3 MPC Using Reduced Models

In this section, we discuss the literature in the field of MPC related to this thesis.
At the beginning, we discuss the literature ensuring stability of the closed-loop
system. Afterwards, we concentrate on MPC using reduced models. For a general
overview of MPC we refer to the books [Camacho and Bordons, 2007; Grüne and
Pannek, 2017; Kouvaritakis and Cannon, 2016; Rawlings and Mayne, 2009] and
survey articles [Findeisen et al., 2003; Joe Qin and Badgwell, 2003; Magni and
Scattolini, 2004; Mayne, 2014; Mayne et al., 2000].

In MPC, the infinite horizon optimal control problem is approximated by a finite
horizon optimal control problem. Hence, stability of the closed-loop system is not
guaranteed a-priori. Many versions of MPC have been proposed in the literature
in order to ensure stability. A zero terminal state constraint was used in [Chen
and Shaw, 1982; Keerthi and Gilbert, 1988; Mayne and Michalska, 1990]. The
zero terminal state constraint was extended to a terminal constraint set [Chisci
et al., 1996; Michalska and Mayne, 1993; Scokaert et al., 1999]. This MPC version
is known as dual mode since inside the terminal constraint set a local control
law is used instead of the model predictive controller. A terminal cost (without
terminal state constraint) was proposed for linear, constrained, and stable systems
in [Rawlings and Muske, 1993]. The combination of a terminal constraint set
and terminal cost emerged to a common framework to guarantee stability for
MPC [Chen, 1997; Chen and Allgöwer, 1998; Chmielewski and Manousiouthakis,
1996; De Nicolao et al., 1998; Fontes, 2001; Scokaert and Rawlings, 1998]. The
terminal constraint set is often defined by a local stabilizing controller. In contrast
to dual mode MPC, this local controller is never applied. But, the local stabilizing
controller is used to prove recursive feasibility, i.e., from feasibility of the finite
horizon optimal control problem at the initial time instant follows feasibility for all
subsequent sampling instants.
Together with results from tube-based robust MPC [Bemporad and Morari,

1999; Mayne et al., 2005], the above references are the basis for the results about
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MPC using reduced models of this thesis. Further results about stability of MPC
are, e.g., contractive MPC [de Oliveira Kothare and Morari, 2000; Polak and Yang,
1993a,b; Yang and Polak, 1993] and unconstrained MPC [Grimm et al., 2005;
Grüne, 2009; Grüne and Pannek, 2017; Grüne and Rantzer, 2008; Jadbabaie and
Hauser, 2005; Reble, 2013; Reble and Allgöwer, 2012]. Unconstrained MPC relies
on certain controllability assumptions to compute a sufficiently large prediction
horizon in order to guarantee stability without a terminal constraint.

When MPC is applied to high-dimensional systems, solving the high-dimensional
optimization problem is a large computational burden. Therefore, reduced models
are frequently used for the prediction in MPC, e.g., [Agudelo et al., 2007a; Bala-
subramhanya and Doyle III, 2000; Dubljevic et al., 2006; Froisy, 2006; Hovland and
Gravdahl, 2008; Hovland et al., 2008a; Huisman and Weiland, 2003; Jarmolowitz
et al., 2009; Marquez et al., 2013; Nagy et al., 2000; Narciso and Pistikopoulos,
2008; Ou and Schuster, 2009; Shang et al., 2007; Touretzky and Baldea, 2014; Xie
and Theodoropoulos, 2010]. Furthermore, linear reduced models can be exploited
in MPC to facilitate the solution of the online optimization problem [Huisman
and Weiland, 2003; Marquez et al., 2013]. For explicit MPC either reduced models
or a projection of the state may be used to reduce the number of regions [Hovland
et al., 2008a; Johansen, 2003]. Alternatively to using reduced models for MPC,
the computational efficiency can also be increased by reformulating the optimiza-
tion problem. Examples are move-blocking [Cagienard et al., 2007], generalized
input parameterizations [van Donkelaar et al., 1999], or the approximation of the
optimization problem [Kouvaritakis et al., 2002].
By using a reduced model within the model predictive controller, a mismatch

between the plant and the prediction model is introduced. As a result, satisfaction
of constraints or asymptotic stability of the closed loop may be lost. Since these
are important properties of the closed-loop system, robustness against the model
reduction error has to be ensured by the MPC scheme.
Narciso and Pistikopoulos [2008] proposed to utilize the a-priori error bound

of balanced truncation to tighten the output constraints. However, recursive
feasibility and asymptotic stability are not established in [Narciso and Pistikopou-
los, 2008]. When the high-dimensional system is given by a PDE, under the
assumption of recursive feasibility, asymptotic stability of the closed-loop system
and hard state constraint satisfaction can be guaranteed [Dubljevic et al., 2006].
However, in [Dubljevic et al., 2006], the model reduction method is limited to
modal truncation.
Alternatively, one may think of methods from robust MPC [Bemporad and

Morari, 1999; Mayne et al., 2005]. As noted in [Hovland et al., 2008a], “the
applicability of these methods to establish robustness in the context of MPC
with reduced-order models remains a challenging open research question”. In the
meantime, results of robust output feedback MPC [Løvaas et al., 2007, 2008a,b]
have been specialized to MPC using reduced models. Hovland et al. [2008b]
guarantee robust stability despite the model reduction error by choosing the cost
functions such that a Lyapunov function for the closed-loop system decreases with
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time. The work of Hovland et al. does not rely on an explicit bound on the
model reduction error with the result that it applies only to stable systems and
furthermore soft state constraints. In [Sopasakis et al., 2013], it is suggested to
use methods from tube-based robust MPC [Mayne et al., 2005, 2006] to establish
constraint satisfaction and asymptotic stability of a (possibly large) set around
the origin. Tube-based robust MPC is exploited in [Kögel and Findeisen, 2015;
Lorenzetti and Pavone, 2019; Lorenzetti et al., 2019] to prove constraint satisfaction
and asymptotic stability of a (possibly large) set around the origin despite the
model reduction error and a bounded additive disturbances on the system dynamics
and measurement. Furthermore, robust MPC is utilized in [Bäthge et al., 2016] to
show recursive feasibility when using a coarse or reduced model for the long-term
prediction. The error from using the coarse model is approximated by an additive
uncertainty and an uncertain initial condition. Hence, constraint satisfaction and
recursive feasibility is not proven when a reduced model is used for the long-term
prediction.
Altogether, asymptotic stability and satisfaction of hard state constraints for

MPC using a reduced model is treated, to the best of our knowledge, only in [Dublje-
vic et al., 2006; Kögel and Findeisen, 2015; Lorenzetti and Pavone, 2019; Lorenzetti
et al., 2019; Sopasakis et al., 2013]. However, in all these references, satisfaction
of hard state or output constraints is guaranteed by tightening the constraints
according to a bound on the error between the detailed and the reduced model. To
predict this bound, all inputs or all inputs and states in a bounded set are taken
into account. Thereby, significant conservatism is introduced, since this possibly
large error bounding sets are used to tighten the constraints.
The existing methods for MPC using reduced models with guarantees are

compared in Table 1.1 with respect to the applicable model reduction method,
conservatism of the error bound utilized to satisfy hard state constraints, asymptotic
stability of the origin, computational efficiency of the optimal control problem, and
the possibility to use output feedback. The method proposed in this thesis is also
shown in Table 1.1 to ease the comparison with existing methods.

1.2.4 Summary

In the last sections, we have given an overview about the literature concerning
model reduction, bounds for the reduction error, and MPC using reduced models.
While for model reduction of linear systems several widely accepted methods

that result in models with reduced order and reduced computational complexity
exist, methods for nonlinear systems are less developed. Challenges in nonlinear
model reduction are, first, that a nonlinear mapping between the states of the
detailed and the reduced model can be required to achieve a reduced model of low
order despite a small approximation error. Second, for nonlinear systems besides a
reduced order also a simplification of the functional expression is often necessary
to achieve computationally efficient reduced models. Third, system properties such
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1.2 Overview of the Research Area

Table 1.1: Properties of methods for MPC using reduced models with robustness
against the model reduction error. A 3 ( , 5) denotes that the property is satisfied
largely (with restrictions, not at all or with considerable restrictions).
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Modal truncation, error bound for worst-case input,
recursive feasibility assumed [Dubljevic et al., 2006] 5 3 5

Balanced truncation, a-priori error bound of balanced
truncation [Narciso and Pistikopoulos, 2008] 5 3 5

Any model reduction method, no explicit error bound,
asymptotic stability of the origin by constraints on
the cost function [Hovland et al., 2008b]

3 5 3 3 3

Any model reduction method, error bound for worst-
case inputs, asymptotic stability of a set around the
origin [Sopasakis et al., 2013]

3 3 5

Any projection-based model reduction method, er-
ror bounding system taking the actual input and
state into account, asymptotic stability of the origin

[Löhning et al., 2014]
3 3 3 3 5

Any model reduction method, error from model reduc-
tion approximated by additive bounded uncertainty
and uncertain initial condition [Bäthge et al., 2016]

3 5 5 3 5

Any (projection-based) model reduction method, er-
ror bound for all inputs and states in a bounded set,
asymptotic stability of a set around the origin

[Kögel and Findeisen, 2015;
Lorenzetti and Pavone, 2019; Lorenzetti et al., 2019]

3 3 3
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Chapter 1 Introduction

as stability need to be preserved in many cases. Fourth, it is desired to obtain a
computationally efficient model reduction procedure.
For the application of reduced models we have looked at MPC using reduced

models. For this field, the main challenge is to provide guarantees for the closed
loop with the plant such as asymptotic stability of the origin and satisfaction of
constraints with a reasonable conservatism while allowing for a computationally
efficient solution of the online optimization problem. Even for linear systems
only few and limited results exist. To tackle the challenge, bounds for the model
reduction error are required that are both tight and computationally efficient.
Moreover, existing applicable a-posteriori error bounds are only marginally stable,
which prevents to establish asymptotic stability of the origin for the closed loop
with the plant. Hence, another challenge is to derive error bounds that converge
to zero asymptotically for vanishing input.

1.3 Contributions of the Thesis

In this thesis, we address the challenges described in the previous section. Thereby,
we contribute to the fields of model reduction and MPC. More precisely, we present
novel methods for the research topics model reduction of nonlinear systems, bounds
for the model reduction error, and MPC using reduced models.
With respect to model reduction, we propose in Chapter 3

• a model reduction method for nonlinear continuous-time dynamical systems,
which allows to obtain models of low order and low computational complexity.

The method is an I/O trajectory-based approach that — in contrast to many other
existing model reduction methods — relies on parameter optimization and not on
a projection. This allows us to use a nonlinear mapping from the state variables of
the detailed model to the state variables of the reduced model determined by the
observability map. A low complexity functional expression of the reduced model is
achieved by sparsity enhancing `1-minimization. Moreover,

• we extend the proposed method to preserve the location and local exponential
stability of multiple steady states.

For this purpose, we derive a necessary and sufficient condition for the simultaneous
stability of a set of steady states. We relax the resulting optimization problem to
a sequential convex optimization problem, which admits an efficient optimization.
The reduced model with low complexity obtained using the proposed method can
be used for MPC of complex nonlinear systems. MPC using reduced models with
guaranteed asymptotic stability and constraint satisfaction is demanding even
for LTI systems as indicated by the few and limited results. To overcome the
limitations depicted in Table 1.1, we focus on the class of LTI systems for the error
bound and the MPC schemes.

In Chapter 4, we improve an existing a-posteriori bound for the model reduction
error. This results in
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1.3 Contributions of the Thesis

• an asymptotically stable system that bounds the error between the detailed
and the reduced model.

Due to the asymptotic stability instead of marginal stability, the improved error
bound is considerably tighter than the original one while at the same time possesses
a comparable computational demand. For the application in model based control,
we achieve the asymptotic stability even for unstable systems by prestabilization.
Furthermore, we compare the proposed error bound with existing ones using a
model of a tubular reactor.
In Chapter 5, we utilize the improved error bound to derive

• an MPC scheme using a reduced model that guarantees asymptotic stability
and satisfaction of hard input and state constraints

when the model predictive controller is applied to a high-dimensional and possibly
unstable plant. Besides asymptotic stability and constraint satisfaction, obtaining
a good performance with respect to the cost functional is an important advantage
of MPC. Hence, we show that for a common choice of design parameters, first,
the infinite horizon cost functional is preserved while replacing the plant with the
reduced model and, second,

• the proposed MPC scheme implicitly minimizes the quasi-infinite horizon cost
functional of an MPC scheme using the plant model despite using a reduced
model for the prediction.

In this case, the proposed MPC scheme also guarantees an upper bound for the
cost functional value of the closed loop with the plant. To achieve the mentioned
guarantees, the online optimization problem includes the nonlinear error bounding
system. This raises the question of the computational complexity of the online
optimization problem. Therefore, in Chapter 6 we show for discrete-time plants
that

• the online optimization problem can be reformulated as a second-order cone
program,

which can be solved efficiently. Existing MPC schemes using reduced models with
comparable guarantees have been applied to a practically motivated example, to
the best of our knowledge, only in [Kögel and Findeisen, 2015]. We demonstrate
the applicability of the developed MPC scheme to control the model of a tubular
reactor. In contrast to [Kögel and Findeisen, 2015], we show in the simulation
study that

• the proposed MPC scheme achieves a good trade-off between computational
efficiency and conservatism

while at the same time providing important guarantees for the closed-loop behavior.
Summarizing, we provide novel methods concerning model reduction and the

utilization of reduced models with the common goal of reduced computational
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Chapter 1 Introduction

complexity. Since the model reduction error can compromise the application
at hand, we provide methods with rigorous guarantees in this thesis. Our main
contributions are a novel method for model reduction of nonlinear systems, improved
a-posteriori bounds for the model reduction error as well as novel algorithms for
the utilization of reduced models in MPC.

1.4 Design Workflow of the Proposed Model Predictive
Control Scheme

One major contribution of this thesis is the proposed MPC scheme using a reduced
model and error bound. This MPC scheme combines several elements introduced
in different chapters. As a consequence, the workflow to design the proposed model
predictive controller using a reduced model depicted in Figure 1.2 serves the reader
also as a guide while reading the thesis. Hence, we present the workflow already
here.

The first step to design the proposed model predictive controller using a reduced
model is preprocessing of the plant model in order to end up with an asymptotically
stable preprocessed model. Then, the reduced model is computed by projection
of the preprocessed model. In this thesis, the POD is used for this step but any
projection based methods are applicable. In the third step, the error bound is
derived and evaluated. If the error bound is too conservative, the preprocessing or
the model reduction has to be adapted. If the error bound is tight enough, the
proposed model predictive controller can be designed. To achieve a satisfactory
closed-loop performance, further adaptions of the design parameters of all steps
can be required.

1.5 Outline of the Thesis

The background for this thesis is provided in Chapter 2. This includes the framework
of model reduction by projection, model reduction by POD, existing a-posteriori
bounds for the model reduction error, a common framework to guarantee stability
for nominal MPC, and the control problem of a tubular reactor.

In Chapter 3, we present a method for model reduction of nonlinear systems based
on input-output data. After the problem statement, the procedure is described
and utilized to reduce the model of a mitogen-activated protein kinase (MAPK)
cascade. In the third section of Chapter 3, the procedure is extended to preserve
the location and local exponential stability of multiple steady states.
The model reduction introduces an error between the detailed model and the

reduced model. Hence, in Chapter 4 we show for LTI systems how this error can
be bounded while simulating the reduced model. Although the error bound can be
used in a broad context, we aim at the application for MPC. After stating the
problem setup we introduce a preprocessing of the plant including a prestabilization
and a state transformation. Then, a bound for the norm of the matrix exponential
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No

No

Plant

Preprocessing

Separating the prestabilization and state
transformation from the error bound (Chapter 4)

Preprocessed model

Model reduction

Model reduction by POD (Chapter 2)

Bounding the model reduction error

Asymptotically stable a-posteriori
error bounding system (Chapter 4)

Tight error bound?

MPC using a reduced model and error bound

Asymptotic stability, constraint satisfaction,
and performance (Chapter 5)

Apply the model predictive controller
to the plant including the preprocessing

Desired performance achieved?

End

Yes

Yes

Figure 1.2: Workflow to design the model predictive controller using a reduced
model and error bound.
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is introduced and the connection between the preprocessing and the parameters of
this bound is discussed. The a-posteriori error bound is presented in the fourth
section together with a discussion of several ways to achieve an asymptotically
stable error bound and the relation to existing error bounds. Finally, the proposed
error bound is compared with existing ones using the model of the tubular reactor.
In Chapter 5, the error bound is utilized for MPC using reduced models. At

the beginning we state the problem setup and apply the preprocessing and model
reduction. Then, we ensure constraint satisfaction for the preprocessed model in
a computationally efficient way. Furthermore, we show that for a certain choice
of design parameters the model reduction error can be eliminated in the cost
functional. The main theoretical result of Chapter 5 is the proof of recursive
feasibility and asymptotic stability of the plant model in closed loop with the
proposed MPC scheme. Finally, we apply the proposed MPC scheme to the
tubular reactor and compare the performance with an MPC scheme using the
plant model as well as an MPC scheme using only the reduced model without
the error bound. Using the plant model for MPC is possible in this simulation
study but would in general be prohibitive in an industrial application due to the
real-time requirements.
The application of MPC requires optimization in real time. Thus, the com-

putational demand of the proposed MPC scheme is considered in Chapter 6 in
order to enhance the applicability. To have a finite-dimensional static optimiza-
tion problem, we consider discrete-time systems. The main goal is to deduce
a computationally efficient formulation for the optimization problem. Thus, we
show that the optimization problem can be reformulated as a convex optimization
problem. Afterwards, the convex optimization problem is reformulated such that it
is independent of the dimension of the plant model. Furthermore, the optimization
problem is stated as a second-order cone program (SOCP), which allows to utilize
dedicated and more efficient solvers. Finally, the computational demand of the
three MPC schemes considered in Chapter 5 is assessed by means of the tubular
reactor.

This thesis concludes with a summary and discussion followed by an outlook of
possible future research directions.

Some results of this thesis have already been published in a very similar form.
Parts of Chapter 2 have already been presented in [Löhning et al., 2014]. Chapter 3
is very similar to [Löhning et al., 2011a,b]. Chapter 4 is partially based on [Hase-
nauer et al., 2012; Löhning et al., 2011c, 2014]. Preliminary results of Chapter 5
have already been published in [Löhning et al., 2014].
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Chapter 2

Background

In the previous chapter, we have given an overview of the research areas related to
this thesis and we have outlined the contributions of this thesis. In this chapter, we
describe existing results underlying the contributions in more detail to provide the
knowledge required subsequently. In Section 2.1, we present a common framework
for model reduction and show one particular method for model reduction known
as POD. For this model reduction framework, we discuss in Section 2.2 existing
a-posteriori error bounds. An introduction to MPC and a common framework
to guarantee convergence to the origin for nominal MPC is given in Section 2.3.
Furthermore, we introduce an MPC approach using a reduced model that neglects
the model reduction error. Finally, in Section 2.4, we introduce the model of
a nonisothermal tubular reactor, which is used in Chapters 4–6 to evaluate the
presented methods.
Parts of Sections 2.3 and 2.4 have already been presented in [Löhning et al.,

2014].

2.1 Model Reduction

The field of model reduction deals with algorithms that simplify dynamical models.
This system to be reduced will be called detailed model in this thesis and abbreviated
using the subscript D. We consider detailed models described by n first-order
ODEs and a set of nY algebraic equations defining the output yD(t;x0, u) ∈ RnY

at time t ∈ R0+ for the initial condition x0 ∈ Rn and input u(·) ∈ LnU
2 of dimension

nU as in [Antoulas, 2005b]. Hence, the detailed models are of the form

ΣD :

{
ẋ(t) = f

(
x(t), u(t)

)
, x(0) = x0 ,

yD(t) = h
(
x(t), u(t)

)
,

(2.1)

in which x(t) ∈ Rn is the state of the system at time t ∈ R0+ and n the order
of the model. To ensure existence and uniqueness of solutions the vector field
f : Rn × RnU → Rn is assumed to be globally Lipschitz continuous.

Given a detailed model ΣD, the objective is to find a model of reduced complexity
ΣR that provides a good approximation of the I/O behavior of ΣD. In this thesis, the
complexity of a system contains the number of states as well as the computational
complexity of the right-hand side of the dynamics. The approximation quality can
be measured, for example, by the norm of the output error, i.e., the difference
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Chapter 2 Background

in the output for the same input and corresponding initial condition. While for
LTI models a good approximation for all inputs is often considered, this choice
may lead to unnecessarily complex reduced models for general nonlinear systems.
Hence, we consider the output error only for a finite time interval [0, Tend] as
well as important initial conditions and input trajectories. The important initial
conditions and inputs can be specified by a subset of the state space and input
space or importance weights as used in Chapter 3.

2.1.1 Model Reduction by Projection

In this section, we discuss a very common framework for reducing detailed models
of the form (2.1), which we denote model reduction by projection. This framework
is used by many well-known methods, among other things, balanced truncation,
POD, modal truncation, and Krylov methods. Model reduction by POD will
be explained in Section 2.1.2. For the other model reduction procedures we refer
to [Antoulas, 2005b]. In addition to the popularity, model reduction by projection
is important in this thesis since the error bounds discussed in Section 2.2 and
Chapter 4 allow for any model reduction method relying on projection. Since
the error bounds are derived for linear systems, only linear transformations are
considered in this section.
For model reduction by projection, we consider the full-column rank matrices

V ∈ Rn×nR and W ∈ Rn×nR satisfying WTV = InR . We derive the reduced model
of order nR similar to [Antoulas, 2005b, Section 1.1.1]. Consider the nonsingular
matrix T =

[
V Ṽ

]
∈ Rn×n with T−1 =

[
W W̃

]
T and the state transformation

x(t) := Tz(t). Then, we partition

z(t) =:

[
z1(t)
z2(t)

]
=

[
WTx(t)

W̃Tx(t)

]

into the dominant states z1(t) ∈ RnR and the nondominant states z2(t) ∈ Rn−nR .
By inserting x(t) = Tz(t) into (2.1), we get

ż1(t) = WTf
(
V z1(t) + Ṽ z2(t), u(t)

)
, z1(0) = WTx0 ,

ż2(t) = W̃Tf
(
V z1(t) + Ṽ z2(t), u(t)

)
, z2(0) = W̃Tx0 .

The model reduction occurs by neglecting the dynamics of the nondominant states
z2(t). Truncating the nondominant states results in the reduced model

ΣR :

{
ẋR(t) = WTf

(
V xR(t), u(t)

)
, xR(0) = z1(0) = WTx0 ,

yR(t) = h
(
V xR(t), u(t)

)
.

(2.2)

An estimate for the state of the detailed model x(t) = V z1(t) + Ṽ z2(t) is given by
V xR(t). Since the summand Ṽ z2(t) is neglected in the reduced model, the state of
the reduced model xR(t) and z1(t) = WTx(t) are, in general, not equal for t > 0.
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2.1 Model Reduction

In the last paragraph, we have seen that model reduction by projection is a
truncation of states in an appropriate basis. If only the matrices V and W are
given and not the whole transformation matrix T , as in model reduction by POD
described below, an alternative derivation of the same reduced model ΣR can be
used. This alternative uses the projection VWT onto the subspace spanned by
the columns of V parallel to the kernel of WT. In this approach, the state of the
detailed model x(t) is replaced in (2.1) by the estimated state V xR(t). Then, the
resulting dynamics V ẋR(t) = f

(
V xR(t), u(t)

)
are projected along the kernel of WT.

This results in the same reduced model ΣR since WTV = InR .
Model reduction by projection is visualized in Figure 2.1. The initial condition of

the detailed model is projected along the kernel of WT onto the subspace spanned
by the column of V . The reduced model evolves in the subspace spanned by
the column of V . The black lines depict the connection between the state of the
detailed and reduced model at the time instants 0, 0.5, 1, . . . . Clearly, the majority
of these lines are not parallel to the kernel of WT. This demonstrates that the
state of the reduced model is, in general, not equal to the projected state of the
detailed model for t > 0.

x1

x2

V

x0

xR(0)

Kernel of WT

t = 1
t = 2

t = 3

Detailed model
Reduced model (V xR)

Connection between the
state of the detailed and
reduced model at the
time instants 0, 0.5, 1, . . .

Figure 2.1: Visualization of model reduction by projection for V = [1 0.5]T and
W = [0.9 0.2]T.

Beyond truncation, the nondominant states can also be determined by an
algebraic equation, as discussed in a similar context in [Marquardt, 2002]. Thereby,
a connection to methods mentioned in Section 1.2 is obtained. One example is
residualization, which assumes ż2(t) = 0 = WTf

(
V z1(t) + V z2(t), u(t)

)
. Another

example is the nonlinear Galerkin projection [Matthies and Meyer, 2003], which
uses an explicit relation z2 = η(z1) in which η is a vector field of appropriate
dimension. These methods are not considered as model reduction by projection in
this thesis as in [Antoulas, 2005b].

To evaluate the right-hand side of the dynamics of the reduced model (2.2), we
have to compute, first, the n-dimensional estimated state V xR(t), then the vector
field f(·), and finally the multiplication with WT. Hence, in general, without any
simplification of the functional expression WTf(V ·), the computational complexity
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