
Abstract
In this thesis, we develop a novel class of discrete-time derivative-free optimization algo-
rithms for unconstrained optimization problems. Our key idea is a new procedure to extract
gradient information of an objective function using compositions of non-commutative maps.
Those are defined by function evaluations and applied in such a way that gradient descent
steps are approximated.

The procedure to construct a gradient approximation is based on two main ingredients: 1)
a periodic exploration sequence that defines where the objective function is to be evaluated;
2) so-called gradient-generating functions that are composed with the objective function
in such a way that an approximation of the gradient is obtained. Both ingredients can be
characterized by a set of nonlinear equations. We propose a way to solve these equations,
and we show how this leads to a derivative-free optimization algorithm with semi-global
convergence properties.

The theoretical findings are supplemented with numerical results. A qualitative and quan-
titative simulation study is presented in which we investigate suitable design parameters,
convergence speed, and gradient approximation errors of the proposed algorithm class.
Further, we introduce various tuning rules such as variable step size schemes and adap-
tive exploration sequences. The algorithms we have developed are applied to challenging
benchmarking problems and we compare them with other derivative-free optimization
algorithms in their class. We validate that the presented algorithms are robust against noisy
function evaluations, are able to deal with discontinuous objective functions, and potentially
overcome local minima.
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Deutsche Kurzfassung

In der vorliegenden Arbeit wird eine neue Klasse an zeitdiskreten ableitungsfreien Optimie-
rungsalgorithmen für unbeschränkte Optimierungsprobleme entwickelt. Unsere Hauptidee
ist ein neues Verfahren zur Bestimmung von Gradienteninformationen einer Funktion
mittels Kompositionen nichtkommutativer Abbildungen. Diese sind durch Funktionsaus-
wertungen definiert und ihre Anwendung führt zur Approximation von Gradientenab-
stiegsschritten.

Die Konstruktion dieses Verfahrens zur Gradientenapproximation basiert auf den folgen-
den zwei Bestandteilen: 1) periodische Explorationssequenzen, welche den nächsten Punkt
zur Funktionsauswertung bestimmen; 2) Funktionen zur Gradientenerzeugung, bestehend
aus Funktionsauswertungen der Optimierungsfunktion und einer analytischen Funktion,
sodass ein Gradientenabstiegsschritt approximiert wird. Beide Bestandteile werden durch
ein System von nichtlinearen Gleichungen charakterisiert. Wir stellen eine Lösung für diese
Gleichungen vor und leiten damit einen ableitungsfreien Optimierungsalgorithmus mit
semi-globalen Konvergenzeigenschaften her.

Die theoretischen Ergebnisse werden mit numerischen Resultaten ergänzt. Wir präsen-
tieren eine qualitative und quantitative numerische Studie des Algorithmus, in der wir
geeignete Designparameter sowie Konvergenzgeschwindigkeit und Gradientenapproxima-
tionsfehler untersuchen. Zur Performanzsteigerung wird eine abnehmende Schrittweiten-
steuerung und eine Adaptierung der Explorationssequenz vorgestellt. Außerdem werden
numerische Experimente hinsichtlich verschiedener Benchmark-Probleme und Anwendun-
gen diskutiert. Wir validieren, dass die vorgestellten Algorithmen ein robustes Verhalten
gegenüber verrauschten Funktionsauswertungen haben, nicht stetiger Funktionen handha-
ben und potentiell lokale Minima überwinden können.
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1
Introduction

1.1 Motivation and Background

Powerful optimization algorithms are key ingredients in science and engineering appli-
cations. Over the last decades, advances in machine learning, big-data-driven decision
making, and real-time control methods have been accelerated by sophisticated optimiza-
tion algorithms and the increasing computing power of microprocessors. Optimization in
such applications is often very challenging, e.g. they are high-dimensional, non-convex,
non-smooth, or of stochastic nature. Thus, improving existing optimization algorithms
and developing novel algorithms is of central importance to master those challenges and
therewith enhance technologies.

The need to solve increasingly complex optimization problems has particularly enabled
the development of so-called derivative-free or zeroth order optimization algorithms, i.e., meth-
ods where no derivative information of the objective function is required—only function
evaluations. This is especially appealing when the value of the objective function is ob-
tained by simulations or other black box oracles, or where the calculation of the objective’s
derivative is computationally too expensive and only function evaluations are affordable.
Such scenarios arise constantly in almost every area of modern technology and research:
identifying and constructing the next drug against a disease, planning and scheduling the
traffic flow in big cities, calculating the flight trajectory of a space mission, or developing an
human-like artificial intelligence application, to name only a few potential applications.

The vast number of technology-driven applications and the increasing need for efficient
optimization algorithms is emerging along with a growing number of publications in the
area of derivative-free optimization algorithms. Historically, one of the earliest implemen-
tations of derivative-free algorithms was carried out on the von Neumann architecture-
based computer MANIAC 1—an approximated solution of a six-dimensional non-linear
least-squares problem calculated by utilizing derivative-free coordinate search (cf. Fermi
(1952)). In the same year the well-known derivative-free optimization algorithm based on a
gradient-approximation scheme by Kiefer, Wolfowitz, et al. (1952) was presented. Continu-
ously, several extensions and improvements in the class of gradient approximations with
so-called sample-averaging were developed, e.g in the work of Spall (1992) or Kushner and
Clark (2012). The algorithms presented in this work are also derivative-free optimization
algorithms based on gradient approximation ideas but are closely related to so-called ex-
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Figure 1.1. A figurative illustration of the mathematical concept of non-commutativity based on the
magic cube. Rotations R1 and R2 and then their backward counterparts R−1

1 and R−1
2 are sequentially

performed. Apparently, the initial configuration differs from the final configuration as a result of the
non-commutativity of rotations R1 and R2.

tremum seeking control, a real-time (derivative-free) optimization method in control systems.
Extremum seeking control can be traced back as far as 1922 to the work of Leblanc (1922),
but only in the last two decades the field has regained new interest. Today, sophisticated
tools for real-time optimization problems are available; see Krstić and Wang (2000), Teel
and Popovic (2001), Guay and Zhang (2003), Tan, Moase, Manzie, Nešić, and Mareels (2010),
and Benosman (2016), to mention just a few. One methodology in this field utilizes so-called
Lie brackets from nonlinear geometric control (cf. Dürr, Stanković, Ebenbauer, and Johansson
(2013) and Grushkovskaya, Zuyev, and Ebenbauer (2018)). Conceptually, this method is
related to the approach we present in this thesis. However, as is quite common in control
theory, extremum seeking schemes are stated as continuous time dynamical systems and
not as discrete-time algorithmic optimization schemes.

In the present thesis, we develop a novel class of discrete-time, derivative-free opti-
mization algorithms relying on gradient approximations based on non-commutative maps—
inspired by the aforementioned Lie bracket approximation ideas in extremum seeking
control systems. The introduced algorithm class has several interesting features. It shows
robustness against noisy function evaluations, is able to deal with discontinuous objec-
tive functions, and potentially overcomes local minima. The main idea is to construct
non-commutative maps with function evaluations to extract gradient information of the
objective function. Conceptually speaking, two maps R1, R2 with a composition rule ◦ are
commutative if their permuted compositions are identical (i.e., if R1 ◦ R2 = R2 ◦ R1). For ex-
ample, multiplication of linear maps in the form of matrices is generally non-commutative,
i.e., the result depends on the order in which they are multiplied. The way we utilize non-
commutativity for optimization can be illustrated by the Magic Cube, known also as Rubik’s
Cube (Rubik (1975)), as depicted in Figure 1.1. Let Ri represent a rotation around an axis
and R−1

i its inverse counterpart; then it is obvious that the composition R1 ◦ R2 ◦ R−1
1 ◦ R−1
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Figure 1.2. An illustration of the presented optimization algorithm class based on non-commutative
maps. Effects of non-commutativity are utilized to approximate the negative gradient of the objective
function and therewith the direction to a local minimum. The algorithm is initialized at x0, and in
four steps the algorithm performs an (approximated) negative gradient step to x4.

does not commute as illustrated in Figure 1.1—the initial configuration is not equal to
the final configuration. Figuratively speaking, the main idea and result of this work is the
derivation of suitable mathematical definitions for maps Ri such that the difference between
the initial and final configuration approximates the gradient of an objective function, as
visualized in Figure 1.2. As a special case, two non-commutative maps and their inverse
counterparts, similar to the Magic Cube illustration in Figure 1.1, are applied w.r.t. a point
x0 of an objective function. The gap between the first and last point, i.e., x0 and x4, is an
approximation of the negative gradient at x0 of the objective function (see Figure 1.1).

In a nutshell, this thesis is motivated by the idea to utilize the concept of non-commutative
maps to approximate discrete-time gradient descent algorithms, i.e., designing a class of
novel derivative-free optimization algorithms with convergence guarantees, various tuning
parameters, and a scope of applications ranges from extremum seeking control problems to
general (derivative-free) optimization problems.

1.2 Problem Statement

We consider unconstrained minimization problems of the form

min
x∈Rn

J(x), (1.1)

where only function evaluations of the objective J : Rn → R can be utilized to find a local
minimum x∗ ∈ Rn of J. The class of algorithms we propose is of the form

xk+1 = M
√

h
k (xk, J(xk)), k ≥ 0 (1.2)
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Figure 1.3. Principle of the algorithm class presented in this thesis. Composition of non-commutative
maps as stated in (1.3) for m = 4 and k = 0 such that x4 − x0 ≈ −∇J(x0), see (1.4).

where we call M
√

h
k : Rn × R → Rn the transition map and h ∈ R>0 the step size. The

main idea is to design the transition maps in such a way that for every k ∈ N0, the m-fold
composition of these maps

xk+m =
(

M
√

h
k+m−1 ◦ · · · ◦M

√
h

k

)
(xk, J(xk)) (1.3)

approximates a gradient descent step

xk+m = xk − h∇J(xk) +O(h3/2), (1.4)

as illuminated in Figure 1.3 (b). Conceptually, the “non-commutativity gap” between xk and
xk+m represents the negative gradient of the objective function with an approximation error
of order h3/2. Thus, an approximated gradient-descent optimization procedure, well-known
for example from finite-difference approximations (cf. Kiefer et al. (1952)). The term O(h3/2)
in (1.4) represents a function R : Rn ×R×R>0 → Rn such that for every compact convex
set X ⊆ Rn and J ⊆ R there exist an L ∈ R>0 and h̄ ∈ R>0 such that for all xk ∈ X ,
J(xk) ∈ J , and h ∈ [0, h̄], ‖R(xk, J(xk); h3/2)‖2 ≤ Lh3/2.

For the analysis of the algorithm (1.2) we impose the following assumptions.

Assumption 1. The objective function in the optimization problem (1.1) fulfills the following
properties:

[A1] J : Rn → R is of class C2(Rn,R), and transition maps M
√

h
k : Rn × R → Rn for all

k ≥ 0 are of class C2(Rn ×R,Rn).

[A2] J : Rn → R is radially unbounded, and there exists an x∗ ∈ Rn such that ∇J(x)>(x−
x∗) > 0 for all x ∈ Rn\{x∗}. •

We note that [A2] will be required only for the analysis of the convergence properties. The
implementation of the algorithms, however, is not limited to the class of objective functions
satisfying Assumption 1.
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1.3 Contributions and Outline

In this thesis, we provide a novel class of derivative-free optimization algorithms that is
based on non-commutative maps. In particular, we present a new procedure to extract
gradient information from an objective function by constructing compositions of non-
commutative maps. Those are defined by function evaluations and applied in such a way
that gradient descent steps are approximated and semi-global convergence guarantees are
given. We supplement our theoretical findings with numerical results. Therein, we provide
several algorithm parameter studies and tuning rules, as well as the results of applying our
algorithm to challenging benchmarking problems. The outline of the presented thesis is as
follows:

• In Chapter 2, we first give an overview of related work. We highlight five main classes of
derivative-free optimization algorithms and present established gradient approximation
methods. Further, various applications where derivative-free optimization show good
performance are discussed. Section 2.2 is dedicated to the concept of extremum seeking
control that inspired the algorithms developed in this thesis. Finally, we present our
main idea in Section 2.3. We derive our novel derivative-free algorithm class by two
ingredients, namely the so-called exploration sequence and gradient-generating functions.
The results of this chapter are based on Feiling, Zeller, and Ebenbauer (2018) and Feiling
et al. (2019).

• In Chapter 3, we study the theoretical problem of the presented algorithm class. First,
a general algorithmic scheme is proposed and its gradient approximation behavior is
analyzed (Theorem 1). The two main ingredients are the generalized periodic exploration
sequence that indicates where the objective is to be evaluated and a set of gradient-
generating functions, which are composed with the objective function in such a way that
an approximation of a gradient descent step is obtained. Based on that, the problem in
Section 1.2 is approached by solving i) a quadratic system of equations and ii) a set of
functional equations. This is related to the following two problems: 1) construction of
the exploration sequence (Theorem 4) and 2) various cases of generating function pairs
(Theorem 5 and Theorem 6), respectively. Given the solutions of i) and ii) by 1) and 2), the
semi-global practical asymptotic convergence (Theorem 2) and, by some extension, semi-
global asymptotic convergence (Theorem 3) to a local minimum of the objective function
is proven. Eventually, we discuss the algorithm’s design parameters and functions. This
chapter’s results are based on Feiling, Belabbas, and Ebenbauer (2020).

• In Chapter 4, we study the numerical problem of the presented algorithm class. A
qualitative numerical study of the design parameters and functions is provided, as well
as a quantitative numerical study with convergence speed and gradient approximation
error as performance evaluation metric. Based on that, several performance tuning rules
are discussed, namely variable and adaptive step sizes and an adaption of the exploration
sequence. Finally, numerical experiments are carried out. In particular, a benchmarking
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study on challenging derivative-free optimization problems is presented, and we discuss
potential applications of our algorithm class.

• In Chapter 5, we summarize the results of this thesis and conclude with an outlook of
potential research directions.

Some technical background, notation, and preliminary lemmas are summarized in Ap-
pendix A. All technical proofs are gathered in Appendix B. Additional information on
numerical results is provided in Appendix C and a step-by-step construction of the explo-
ration sequence is presented in Appendix D. A list of nomenclature in this work is presented
on page 123.



2
Related Work and Main Idea

In this chapter we establish the main idea of the presented algorithm class, which paves the
way for the upcoming chapter. Before we present our main idea in Section 2.3, we give a brief
overview of research in derivative-free optimization, gradient approximation schemes, and
various applications in these fields (Section 2.1); because of the vast literature available in
these research fields, we do not aim for a complete overview but refer to several survey and
overview articles in the dedicated sections below. Since the presented algorithm class and
its gradient approximation scheme is inspired by concepts from nonlinear geometric control
and the continuous-time control method extremum seeking, we provide an introduction of
these concepts in Section 2.2.

2.1 Related Work and Literature Review

Derivative-free optimization. This class of optimization algorithms requires no deriva-
tive of the objective function to find local minima (or a global minimum)—only func-
tion evaluations. Over the last decade, derivative-free optimization (as well as its naming
twins black-box optimization, gradient-free optimization, optimization without derivatives,
simulation-based optimization, and zeroth-order optimization) has been an active research
field, that regained new interest after the early outstanding work in the sixties to eighties,
e.g. in Fletcher (1965); Karmanov (1974); Matyas (1965); Nelder and Mead (1965); Polyak
(1987); Rastrigin (1963); Rosenbrock (1960); ?. The acceleration in computational power in
the last decades and the simplicity of applying derivative-free optimization methods were
the main triggers for an increase in research publications in this field. Clearly, this class of
algorithms is limited by accuracy, computational cost, or problem size, because of its strong
correlation on the problem dimension and potential computationally expensive function
evaluations. Nevertheless, the algorithms are known for their simple formulations and,
thus, efficient implementation approaches. In this view, it is a class of algorithms that is
very appealing for practical applications.

An overview of well-established, newly developed, and improved derivative-free op-
timization algorithms is presented in Conn, Scheinberg, and Vicente (2009), Audet and
Hare (2017), and Rios and Sahinidis (2013) with a focus on software implementations for
applications and industry problems. The algorithms can be clustered in five main categories:
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• Direct search methods, first presented in Hooke and Jeeves (1961): only function evalu-
ations are utilized, while no approximation of the gradient or the objective function is
developed. Famous algorithms in this class are random and grid search (cf. Rastrigin
(1963); J. Bergstra and Bengio (2012)), as well as the simplex optimization algorithm by
Nelder and Mead (1965).

• Model-based methods, so-called surrogate or merit functions of the objective function
serve as prediction models to calculate an update step of the algorithm by applying, for
example, convex optimization principles and algorithms (cf. Boyd and Vandenberghe
(2004)). A well-known method in this category is the trust region method (cf. Moré and
Sorensen (1983); Conn, Gould, and Toint (2000)), of which various approaches to derive
surrogate functions can be found in literature, e.g. polynomial models (cf. M. J. Powell
(2003)), quadratic interpolation (cf. Winfield (1973)), or radial basis function interpolations
(cf. Buhmann (2003)).

• Meta-heuristics, first mentioned in Fogel, Owens, and Walsh (1966): algorithms that
mimic processes in natural selection, statistical mechanics, and population dynamics (cf.
Holland et al. (1992)), for example, processes inspired by natural phenomena, such as
grey wolf hunting behavior (cf. Mirjalili, Mirjalili, and Lewis (2014)) or the social behav-
ior of humpback whales (cf. Mirjalili and Lewis (2016)). Famous and well-performing
algorithms in this category are, for example, simulated annealing (cf. Kirkpatrick, Gelatt,
and Vecchi (1983)), genetic algorithms (cf. Bonabeau, Dorigo, Marco, Theraulaz, and
Théraulaz (1999)), or particle swarm optimization (cf. Eberhart and Kennedy (1995)).

• Bayesian optimization: this method is (often) based on Gaussian processes and sequential
strategies motivated by statistical analysis (see, for example, Jones, Schonlau, and Welch
(1998); Brochu, Cora, and De Freitas (2010); Shahriari, Swersky, Wang, Adams, and
De Freitas (2015)). Conceptually, the objective function is treated as a random function
with a prior distribution over the objective function beliefs. Those prior beliefs are
updated via function evaluations to build a posterior distribution over the objective
function beliefs. Based on that, the next search step is calculated via different versions of
sampling criteria.

• (Stochastic) Approximation methods: derivatives, specifically first order information, i.e.,
gradients of the objective function, are approximated by so-called sample averaging of
function evaluations. The first well-known algorithm in this class is the (scalar) method
of Kiefer et al. (1952). Because this is the category of the presented optimization algorithm
class of this thesis, we provide a more detailed discussion in the paragraph about gradient
approximations below.

Note that many subcategories and various hybrid versions of algorithm classes in between
the five categories, as stated above, exist. For a more detailed categorization we refer to
Audet and Hare (2017) and Conn et al. (2009).

In our view, a further class of derivative-free optimization methods is extremum seeking
control, which is derived as feedback controller for dynamical systems. Erroneously, this


