
Introduction
This thesis is dedicated to the numerical treatment of operator equations using adap-
tive quarklet methods. By a quarklet we understand the product of a wavelet and
a piecewise polynomial, consequently we call a polynomially enriched wavelet basis
quarklet frame. These function systems can initially be constructed both on the real
line and the unit interval and, having done this, be generalised to higher dimensions
by using tensor product techniques and domain decompositions. Quarklet systems
are stable in function spaces, furthermore they fulfil certain compressibility properties
and hence are convenient to be utilised in generic frame methods for the treatment
of operator equations. Furthermore they represent a wavelet version of hp-methods,
therefore there is strong hope that they converge quite fast.

Scope of Problems
Numerous problems in science and technology can be described with the help of
partial differential equations. For example, the heat distribution in some material
can be described as the solution of a partial differential equation, which is dependent
on the time and the space coordinates. The heat equation belongs to the class of
parabolic partial differential equations. A further class of time-dependent equations,
e.g., the wave equation, are the hyperbolic differential equations. However, we restrict
our discussion to the case of elliptic partial differential equations, which describe
stationary phenomena, such as the deflection of a membrane or the bending of a
board. To ensure unique solutions, one additionally has to incorporate boundary
values. The most prominent example of an elliptic boundary value problem is the
Poisson equation with homogeneous Dirichlet boundary conditions:

−∆u = g in D,
u = 0 on ∂D.

Here, ∆ denotes the Laplacian, g a continuous function, D ⊂ Rd a bounded, open,
and connected set with boundary ∂D and u the unknown solution. Under certain
additional assumptions elliptic boundary value problems belong to the class of elliptic
operator equations in Hilbert spaces. In contrast to ordinary differential equations
which just depend on one variable, partial differential equations are rather hard to
solve analytically. Very often there does not exist a closed form of the solution.
Furthermore, the concept of classical differentiable functions turns out to be too

1



Introduction

restrictive for certain boundary value problems. To overcome this obstacle, one treats
a weaker concept of solutions. The boundary value problem is transformed into an
operator equation on a Sobolev space Hm

0 (D) which is induced by a bilinear form
a(·, ·):

a(u, v) = 〈g, v〉L2 for all v ∈ Hm
0 (D).

Since the Sobolev spaces are infinite-dimensional generally, one can only gain an
approximate solution by implementable methods.

Established Methods
Since this thesis is concerned with elliptic boundary value problems in their weak
formulation, we exclude solution methods like finite difference methods that treat
the classical formulation. The Galerkin scheme is a well-established method for the
solution of elliptic boundary value problems. There the problem is considered on a
finite-dimensional subspace of the solution space. This subspace is equipped with
a basis {bi}i=1,...,N . With a bijection between Rd and this space, one can switch to
a system of linear equations with coefficient matrix (a(bj, bi))i=1,...,N,j=1,...,N . If the
ansatz space in a certain sense is close to the solution space, then one can guarantee
that the approximate solution uN is close to the exact one:

‖u− uN‖Hm
0 (D) . inf

w∈VN
‖u− w‖Hm

0 (D).

Here, VN denotes the N -dimensional subspace and uN the solution computed on this
space. Prominent representatives of Galerkin schemes are the finite element methods
(FEM). There local basis functions are constructed associated with a decomposition
of the domain. A finer decomposition leads to a higher dimension of the ansatz
space and a more precise solution. Hence finite element methods provide a geometric
concept. The width of the mesh is usually denoted by h, therefore we denominate
methods that are based on a solution space decomposition with respect to the space
coordinates as h-methods. For second order elliptic partial differential equations,
piecewise linear ansatz functions are an obvious choice. Finite element methods that
rely on increasing the polynomial degree of the ansatz functions are known as p-FEM.
Even a combination of both versions is possible. For special cases of so-called hp-FEM
exponential convergence has been achieved.
Furthermore, adaptivity plays a key role. In uniform schemes the refinement strat-

egy is equally performed for all ansatz functions. Therefore, degrees of freedom and
hence computing capacity are wasted in regions of the domain where the solution is
already well approximated. Adaptive schemes are self-controlled in the sense that the
exactness of a calculated solution is estimated and the refinement is performed only
in regions where the error is probably large. Meanwhile it is well-known that adaptive
schemes are superior if the solution of the partial differential equation is contained in

2



certain Besov spaces. In particular for h-FEM, there is a huge amount of literature,
we refer to [17,54,76,89] for an overview. For hp-FEM we refer to [8–12,47,62].
In contrast to the geometric concept of finite element methods, wavelet methods

represent a basis orientated concept. Wavelet bases are certain bases for function
spaces, in particular for Sobolev spaces. They provide strong analytical properties.
It is possible to construct wavelets with arbitrarily high but finite regularity and still
compact support. Furthermore they possess a certain amount of vanishing moments
which lead to sparse representations of smooth functions. Wavelets have success-
fully been employed in techniques of signal analysis, but they can also be utilised for
the discretisation of operator equations. In this case the resulting stiffness matrix
is biinfinite and can be interpreted as an operator between sequence spaces. Cer-
tain properties of the wavelet basis and of the operator induce compressibility of the
operator, therefore one can implement inexact versions of the theoretically feasible
iterative solution methods. In the case of wavelet methods, the adaptivity reduces
to approximately applying the stiffness matrix to some vector. Therefore, adaptive
wavelet schemes are not faced with many typical problems that arise with adaptive
finite element methods. We refer to [18–20,81]. Usually wavelets are constructed by
dyadic dilation and translation of a single function. Hence they belong to the class
of h-methods. A classical wavelet basis Ψ of L2(R) has the form

Ψ :=
{

2j/2ψ(2j · −k) : j, k ∈ Z
}
.

With certain additional assumptions, the classical wavelet characterisation of a Besov
space reads as

‖f‖qBsq(Lq(R)) ∼
∑
j≥−1

∑
k∈Z

2j(s+
1
2−

1
q

)q|〈f, ψj,k〉L2(R)|q.

Quarklet Schemes
A large part of this thesis will be concerned with the obvious question if it is possible
to design wavelet versions of hp-methods for the solution of elliptic operator equations.
This task can be decomposed into several smaller steps.

Construction of Univariate Quarklet Systems
A first step to establish adaptive quarklet methods is to construct stable function
systems in the univariate setting. Quarkonial decompositions of function spaces have
been invented by H. Triebel in [87]. In [30] the polynomial enrichment of partitions
of unity has been discussed and their stability in Besov spaces was shown. Important
tools are Lq stability and Bernstein inequalities of the enriched functions. Further
assumptions on the underlying system were formulated, e.g., Jackson inequalities. In
loc. cit. there also was presented a proof technique of successively considering higher
enriched systems which can be transferred to the case of an underlying wavelet basis.
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In [68] quarklets were primarily mentioned as Haar wavelets which are enriched by
orthogonal polynomials. In [28] quarklet frames on the real line based on the CDF
wavelet basis have been discussed. In particular their compressibility and applicabil-
ity for adaptive frame schemes were proven. Finally, in [26] quarklet frames on the
interval have been constructed, where the major difference to the shift-invariant case
lies in the appropriate construction of boundary functions. We briefly describe the
construction of univariate quarklets. It is based on an underlying biorthogonal spline
wavelet basis. This wavelet basis has been constructed with the help of a multires-
olution analysis, that means the wavelets are linear compositions of generators. In
our particular case those generators are B-splines. Then, a quark ϕp is defined as the
product of a monic polynomial and a B-spline ϕ:

ϕp :=
(
·
dm2 e

)p
ϕ, p ∈ N0.

Then, the quarklet ψp is defined by

ψp :=
∑
k∈Z

bkϕp(2 · −k),

where b = {bk}k∈Z denotes the original wavelet mask. Since the quarklets are linear
combinations of quarks, it suffices to primarily study the properties of the quarks.
One of these properties is refinability in the sense that vectors of quarks are refinable.
In [31] it has been shown how these multiquarks fit in the framework of more general
multigenerators and multiwavelets. Further important properties are, as mentioned
above, stability properties of the single-scale functions, Bernstein inequalities and
vanishing moments. These properties allow to deduce equivalent norms for Besov
spaces. These results are stated in Theorem 4.27 and 4.28. With suitable weights the
frame property in L2-Sobolev spaces immediately follows:

‖f‖2
Hm ∼

∑
λ∈I
|〈f, wλψλ〉Hm|2.

Quarklet Frames on Domains
A large class of elliptic operator equations is considered on domains which are de-
composable into diffeomorphic transformed unit cubes. We restrict our discussion
to the case of translated cubes, for more general domains we refer to [39] . In a
first step of generalisation one has to construct quarklet frames on cubes. A tensor
product approach is favourable since the Sobolev spaces in two dimensions provide
the following structure which can be generalised to higher dimensions:

Hm([0, 1]2) = Hm([0, 1])⊗ L2([0, 1]) ∩ L2([0, 1])⊗Hm([0, 1]).

By performing the following two steps one can even construct more general tensor
product frames on cubes. At first, tensor products of frames are frames for tensor
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products of Hilbert spaces if the weights are appropriately chosen. Subsequently,
rescaled frames which contain a Riesz basis are frames for intersections of Hilbert
spaces. Afterwards, domains like the L-shaped domain, which represents a prominent
test case for adaptive algorithms, are decomposed into cubes in a non-overlapping way.
Based upon a quarklet frame on each cube a quarklet frame on the whole domain
is constructed. We proceed similar to the wavelet case described in [13]. Initially,
one has to choose boundary conditions for the cubes. Then, quarklets defined on a
cube are suitably extended to the neighbouring cubes. For second order differential
equations the simple reflection turns out to be a suitable extension operator. The
main result of this chapter is presented in Theorem 5.15.

Compressibility
Having constructed frames of quarklet type, they are ready to be utilised in generic
frame methods if they possess certain compression properties. That means, the biin-
finite stiffness matrix A has to be well approximated by finite matrices AJ :∑

J∈N
2Js‖A−AJ‖ <∞ for all 0 ≤ s ≤ s∗.

In [28] compressibility for the univariate Laplacian has been shown, in [26] this result
has been generalised to higher dimensions. The Laplacian is an important special case,
nevertheless the compression results can be transferred to other elliptic operators. The
compressibility heavily relies on the vanishing moments property of the quarklets and
affects the performance of adaptive quarklet schemes. To achieve faster convergence
one can distinguish between first and second compression. Second compression in
the case of wavelets has been studied in [34, 80]. One can use the fact that the
quarklets possess a higher local regularity in the design of more involved compression
strategies to gain better results. The univariate main result of this Section is presented
in Theorem 6.7. The different strategies and results in the multivariate case are
described in Theorems 6.15, 6.17, 6.18.

Approximation of Singular Solutions
It is of course a long way to go to achieve provable exponential convergence of adap-
tive quarklet schemes, though a necessary condition is that typical solutions to partial
differential equations can be well approximated in terms of quarklets. It is well known
that domains with re-entrant corners, such as the L-shaped domain, induce singular
solutions. The univariate function xα with α > 1

2 serves as a model for such solutions.
We show that this particular function can be approximated in terms of quarklets such
that the error decreases exponentially with respect to degrees of freedom. To prove
this, similar to [2], a certain spline with varying polynomial degree is constructed on
a partition of the interval [0, 1] that geometrically becomes finer advancing to the

5



Introduction

left boundary. In contrast to that result, the spline described here is m − 2 times
continuously differentiable. The construction can be found in Theorem 7.1. This
particular spline can be developed into single-scale quarks and, with the help of re-
construction properties, transformed into quarklet frame elements. To perform these
transformations, we consider two different methods, firstly a general reconstruction
principle that fits in the framework of general multiwavelets, secondly an adapted
reconstruction principle that even provides a better asymptotic error decay. The re-
sults for the cases L2(I), H1(I) and H1(I2) are presented in the Theorems 7.9, 7.11,
7.13, respectively.

Reconstruction of Multigenerators
Vectors of quarks or quarklets fit in the framework of multigenerators and multi-
wavelets, respectively. This general concept is, e.g., applied to the construction of
orthonormal interpolating wavelets which can not be realised with a single generator.
We use Fourier techniques to derive a general criterion for the reconstruction of multi-
generators in Theorem 3.2 and apply this result to the special case of multiquarks in
Theorem 4.15.

Layout
Parts of this thesis have been published in [26, 27, 31]. We proceed in the following
way. In Chapter 1 we treat the necessary foundations. In Section 1.1 we introduce
function spaces, in particular Sobolev and Besov spaces. In Section 1.2 we recall
some basic facts about elliptic partial differential equations and their weak formu-
lation. Section 1.3 is dedicated to frames. In Chapter 2 we recall the construction
of biorthogonal wavelet bases. Firstly we consider the classical construction of a
wavelet basis of L2(R), secondly we treat the construction of a wavelet basis on the
interval. Two particular spline wavelet bases are of our interest, namely the CDF
wavelet basis from [21] and the basis constructed by M. Primbs in [66]. There re-
construction properties appear as a by-product. In Chapter 3 we derive a general
criterion for multigenerators to fulfil certain reconstruction properties. In Chapter
4 we introduce univariate quarklets. In Section 4.1 we recall the construction and
properties of quark generators on the real line and the interval, respectively. In Sec-
tion 4.2 we apply the results from Chapter 3 to derive reconstruction properties of
the shift-invariant quarklets. In Section 4.3 we adapt quarklets to the interval. This
is done by the appropriate construction of boundary functions. The remainder of
this chapter is dedicated to the stability of quarklet systems in function spaces, in
particular in Section 4.5 and 4.6 we derive equivalent norms for Besov spaces. The
known special cases of L2 and L2-Sobolev spaces are recalled in Section 4.4 and 4.7,
respectively. Having shown the frame property of quarklet systems, it is possible to
design adaptive quarklet schemes. This is done in Chapter 6. In Sections 6.2, 6.3 the
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crucial compression properties of quarklet frames are treated, where we pay attention
to second compression strategies. Finally, in Chapter 7 we study approximation prop-
erties of the quarklets in L2 and H1 norms, respectively. Using the tensor product
ansatz from Section 5.1, it suffices to consider univariate quarklet approximation for
certain singular solutions to elliptic boundary value problems. The thesis closes with
several numerical experiments in Chapter 8. As a canonical example we treat the
Poisson equation on two-dimensional domains with re-entrant corners numerically.
Furthermore, second compression and quarklet approximation are tested.
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