
Summary

Motion-based vehicle simulators are frequently used in research and development, e.g.,
for human factors evaluations and vehicle design, as well as for pilot/driver training,
as such simulations provide a safe and cost-effective testing environment. Visual and
physical motion cues are combined to provide occupants with a feeling of being in the
real vehicle. While visual cues are generally not limited in amplitude, physical cues
certainly are, due to the limited simulator motion space. A motion cueing algorithm
(MCA) is used to map the vehicle motions onto the simulator motion space. This
mapping inherently creates mismatches between the visual and physical motion cues.
Due to imperfections in the human perceptual system, not all visual/physical cueing
mismatches are perceived. However, if a mismatch is perceived, it can impair the
simulation realism and even cause simulator sickness. For MCA design, a good
understanding of when mismatches are perceived, and ways to prevent these from
occurring, are therefore essential. While most other research tries to predict perceived
mismatches based on complex non-linear models of human perception, in this thesis
a data-driven approach, using continuous subjective measures of Perceived Motion
Incongruence (PMI), is adopted. PMI refers to the effect that perceived mismatches
between visual and physical motion cues have on the resulting simulator realism.
When a mismatch is perceived, but does not influence the simulation realism, the PMI
is low, while a mismatch that is detrimental to simulator realism results in a high PMI.
In this thesis we focus on car driving, but the proposed methods can also be applied to
other vehicles.
One often-occurring type of mismatch between visual and physical motion cues is
referred to as scaling errors. Such errors are caused by a pure (down) scaling of the ve-
hicle physical motion, such that it fits in the simulator motion space. MCAs also make
use of tilt-coordination, where the gravitational force and a non-zero rotation with
a rotational rate below human perception threshold, are used to simulate sustained
accelerations. This mechanism can cause shape differences between the visual and
physical motion signals, resulting in other types of cueing errors, i.e., missing or false
cues. It is well known that missing or false cues are more likely to be perceived than
scaling errors with a similar amplitude and are often more detrimental to simulator
realism. Thus, not only the magnitude of the mismatch, but also the type of mismatch is
important information when designing and optimizing an MCA. While this is widely
accepted knowledge and is implicitly used by experts to tune MCAs, currently this
knowledge is not explicitly used in MCA optimization due to its qualitative, rather
than quantitative, nature.
Another characteristic of simulator realism is that it is inherently time-varying.
While a simulation might feel mostly realistic, momentary manoeuvres requiring
a large motion space, such as driving a roundabout, can cause a sudden decrease
in realism. Currently, experts often apply worst-case MCA tuning, resulting in
suboptimal physical motions for those parts of the simulation that do not require
this large motion space. Certain MCAs, such as those based on model predictive
control, on the other hand, can optimize the simulator realism at each simulation
time step. This thesis aims to connect the benefits of expert knowledge on motion
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cue mismatches with the advantage of optimization algorithms in dealing with the
time-varying aspect of simulation realism. It aims to develop an MCA-independent,
offline prediction method for time-varying PMI during vehicle motion simulation,
with the purpose of improving motion cueing quality. To this end, the thesis is di-
vided in three parts, dedicated to measuring, modelling and minimizing PMI, respectively.

Part I focuses on the development of a novel method to measure time-varying PMI
using a continuous subjective rating. Two human-in-the-loop experiments were
performed, where participants were asked to rate the PMI continuously throughout
several repetitions of a passive driving simulation. The first experiment, Experiment 1,
assessed the reliability and validity of the method itself. Comparing the ratings of
several repetitions of the same simulation showed consistency in participants’ ratings,
verifying the reliability of the method. The validity of the method was assessed by
comparing the continuous ratings to a more established time-independent rating
method and to expert knowledge from literature on the different cueing error types.
The continuous ratings correlated well with a time-independent rating method for
each segment of the simulation and was also consistent with expert knowledge on the
relative PMI between several scaled, missing and false cues.
In a second experiment, Experiment 2, the continuous rating method was applied to
compare the performance of two motion cueing algorithms in a highly realistic vehicle
motion simulation. Again, participants were able to provide consistent continuous
ratings across several repetitions of the same simulation and their time-independent
ratings for each tested MCA setting compared well to their average continuous rating.
This confirmed the reliability and validity of the continuous rating method, also for
more realistic vehicle simulations.

In Part II, the data obtained with the two experiments described in Part I were used to
develop PMI models, to predict the time-varying PMI within and between experiments.
A general model structure was designed to map visual and physical motion cues onto
a Motion Incongruence Rating (MIR), which represents the time-varying rating of PMI
obtained with the continuous rating method. First, the model translates the visual
and physical cues into different types of cueing errors that are combined into one
measure of PMI and then filtered to obtain the modelled Motion Incongruence Rating
(MIR). A wavelet-based Cueing Error Detection Algorithm (CEDA) was developed to
differentiate between scaled, missing and false cues, and its parameters were tuned
using data from Experiment 1. Applying the algorithm showed that the CEDA could
distinguish between scaled, missing and false cues as hypothesized.
To determine within-experiment prediction capabilities, three models of different
complexity were derived from the general model template. These models were fitted
to the first half of the data from Experiment 1, after which their prediction power was
assessed using the second half of this dataset. The prediction results showed that all
models could predict important PMI features and that the prediction improved with
increasing model complexity. An interesting observation was also that false cues were
modelled as being two times more detrimental than scaled cues for the same cueing
error magnitudes. Overall it was shown that the models can indeed link different type
of cueing errors to decreases in cueing quality and predict such decreases for data
within one experiment.
To compare datasets from different experiments, first a method for estimating a Model
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Transfer Parameter (MTP) was developed, with which ratings from one experiment
can be mapped onto the ratings of a second experiment. The MTP needed to align the
ratings from Experiment 1 and 2 was estimated with this method and used to assess
the between-experiment prediction capabilities of the three derived models. Good
prediction capabilities were obtained only when a rich enough dataset was used for
model fitting. The hypothesis that better models can be obtained when increasing
the richness of the estimation dataset was supported by the fact that models fitted to
aggregated data from both experiments were more accurately matched to the measured
ratings then those fitted to either dataset.

Part III focuses on minimizing PMI. The capabilities of the PMI models in predict-
ing decreased cueing quality opens up opportunities to improve this quality. The
predictions can, for example, be used to tune MCAs such that the most critical
drops in cueing quality are avoided. Additionally, developing these PMI models, by
correlating the time-varying PMI to different cueing errors, can help in gaining a better
understanding of what exactly causes decreased cueing quality. In this thesis, a PMI
model was used in an optimization-based MCA. The weights for linear acceleration
and rotational velocity visual-physical cues differences in the cost function of this MCA
were estimated using a static version of the least complex PMI model from Part II and
data from both Experiments 1 and 2.
In a third human-in-the-loop experiment, Experiment 3, the cueing quality of the MCA
with the PMI model weights was compared to the cueing quality of the MCA with
its original weights, which accounted solely for the differences in unit between linear
acceleration and rotational velocity. The results showed that only a small group of
participants, all with prior simulator experience, preferred the MCA with the PMI
model weights. The preference of the remaining, larger group seemed to mainly be
based on a preference for “lower than unity gains” between vehicle and simulator
motions, which is consistent with earlier literature, but was not yet accounted for in
the PMI models. Overall, the results indicate that for MCA optimization a PMI model
needs to be fitted to a much richer dataset in terms of, among others, number and
variety of participants, cueing errors and simulators.

In this thesis a novel approach to improve perceived cueing quality of motion cueing
algorithms was introduced. A complete roadmap, describing how to measure and
model PMI and how to apply such models to predict and minimize PMI in motion
simulations was presented. The results presented in this thesis show the potential of
this novel approach. For future research it is recommended to adapt the developed
PMI measurement method for use in active driving simulations and improve the
PMI models by designing algorithms to detect additional cueing error types. It is
also recommended to gather more and richer PMI rating data via human-in-the-loop
experiments to improve the parameter estimation of these models. Finally, a systematic
investigation on how and under which circumstances these models can be used to
improve cueing quality should also be performed. With these advances, the approach
outlined in this thesis can enable major improvements in simulator cueing and realism.



Samenvatting

Bewegingssimulatoren worden vaak gebruikt in onderzoek en ontwikkeling, voor
bijvoorbeeld de evaluatie van menselijke factoren en het ontwerp van voertuigen,
alsook voor de opleiding van piloten/bestuurders, omdat dergelijke simulatoren een
veilige en kosteneffectieve testomgeving bieden. Visuele en fysieke bewegingsstimuli
worden gecombineerd om de inzittenden het gevoel te geven dat ze zich in het echte
voertuig bevinden. Alhoewel visuele bewegingsstimuli over het algemeen niet beperkt
zijn in amplitude, zijn fysieke bewegingsstimuli dat zeker wel, vanwege de beperkte
bewegingsruimte van de simulator. Een bewegingsalgoritme, een zogenaamd ‘Motion
Cueing Algorithm (MCA)’, wordt gebruikt om de bewegingen van het voertuig te
projecteren op de bewegingsruimte van de simulator. Deze projectie creëert van nature
discrepanties tussen de visuele en inertiële bewegingsstimuli.
Door onvolkomenheden in het menselijke perceptuele systeem worden niet alle visu-
ele/inertiële bewegingsstimuli discrepanties waargenomen. Als een discrepantie echter
wél wordt waargenomen, kan dit het ervaren realisme van de simulatie aantasten
en zelfs simulatieziekte veroorzaken. Voor het ontwerpen van MCAs is een goed
begrip van wanneer discrepanties worden waargenomen en hoe deze kunnen worden
voorkomen, daarom essentieel. Terwijl de meeste andere onderzoeken proberen om
waarneembare discrepanties te voorspellen op basis van uitgebreide niet-lineaire mo-
dellen van menselijke perceptie, wordt in dit proefschrift een datagestuurde benadering
toegepast, gebruikmakend van continue subjectieve metingen van de waargenomen
bewegingsincongruentie (PMI). PMI verwijst naar het effect dat waarneembare dis-
crepanties tussen visuele en inertiële bewegingsstimuli hebben op het resulterende
realisme van de simulator. Wanneer een discrepantie wordt waargenomen, maar niet
als erg storend ervaren wordt in het simulatierealisme, is de PMI laag, terwijl een
discrepantie die schadelijk is voor het simulatorrealisme resulteert in een hoge PMI.
In dit proefschrift richten we ons op het autorijden, maar de voorgestelde methoden
kunnen ook worden toegepast op simulaties van andere voertuigen.
Een vaak voorkomende vorm van discrepantie tussen visuele en inertiële bewegingssti-
muli zijn schalingsfouten. Dergelijke fouten worden veroorzaakt door een pure (terug)
schaling van de fysieke beweging van het voertuig, zodat deze in de bewegingsruimte
van de simulator past. Om aanhoudende versnellingen te simuleren, maken MCAs
gebruik van “tilt-coordination”, i.e., het langzaam kantelen van de simulator. Hierbij
kantelt de simulator met een rotatiesnelheid onder de menselijke waarnemingsdrem-
pel, zodat een component van de zwaartekracht leidt tot een ervaren versnelling van
het lichaam. Dit mechanisme kan vormverschillen veroorzaken tussen de visuele en
inertiële bewegingssignalen, wat resulteert in andere soorten fouten, zoals ontbrekende
of foutieve signalen. Het is bekend dat ontbrekende of foutieve signalen eerder
worden waargenomen dan schalingsfouten met een vergelijkbare amplitude en dat
ze vaak schadelijker zijn voor het ervaren realisme van de simulator. Daarom geeft
dus niet alleen de grootte van de discrepantie, maar ook het type van de discrepantie
belangrijke informatie voor het ontwerpen en optimaliseren van een MCA. Hoewel dit
algemeen aanvaarde kennis is en impliciet door experts wordt gebruikt om MCAs af te
stemmen, wordt deze kennis momenteel niet expliciet gebruikt in MCA-optimalisatie
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vanwege het veelal kwalitatieve, in plaats van voor optimalisatie vereiste kwantitatieve,
karakter ervan.
Een ander kenmerk van simulatorrealisme is dat het van nature varieert over tijd.
Ook als een simulatie voor het merendeel van de tijd realistisch aanvoelt, kunnen
kortstondige manoeuvres die een grote bewegingsruimte vereisen, zoals het rijden
over een rotonde, een plotselinge daling van het realisme veroorzaken. Op dit moment
stemmen experts de MCAs vaak af zodat de projectie van de grootste bewegingsampli-
tudes in de bewegingsruimte past, wat resulteert in suboptimale inertiële bewegingen
voor die delen van de simulatie die deze grote bewegingsruimte helemaal niet nodig
hebben. Bepaalde MCAs, zoals die op basis van “Model Predictive Control”, kunnen
daarentegen het realisme van de simulator bij elke stap in de simulatie optimaliseren.
Dit proefschrift streeft ernaar de voordelen van deskundige kennis over de discrepan-
ties tussen visuele en fysieke beweginsstimuli te combineren met het voordeel van
deze moderne optimalisatiealgoritmes in het omgaan met het tijdsveranderende aspect
van het simulatierealisme. Het doel is om een MCA-onafhankelijke, offline methode te
ontwikkelen om de tijdsafhankelijke PMI tijdens de simulatie van voertuigbewegingen
te voorspellen, met de intentie de kwaliteit van de bewegingssimulatie van het
voertuig vervolgens te verbeteren. Hiertoe is het proefschrift opgedeeld in drie delen,
respectievelijk gewijd aan het meten, modelleren en minimaliseren van PMI.

Deel I richt zich op de ontwikkeling van een nieuwe methode voor het meten van de
tijdveranderende PMI, die gebruik maakt van een continue subjectieve waardering. Er
werden twee mens-in-de-loop experimenten uitgevoerd, waarbij de deelnemers werd
gevraagd de PMI continu te waarderen gedurende verschillende herhalingen van een
passieve rijsimulatie.
Het eerste experiment, Experiment 1, beoordeelde de betrouwbaarheid en validiteit van
de methode zelf. Het vergelijken van de waarderingen van verschillende herhalingen
van dezelfde simulatie toonde consistentie in de waarderingen van de deelnemers en
verifieerde de betrouwbaarheid van de methode. De validiteit van de methode werd
geanalyseerd door de continue beoordelingen te vergelijken met een meer gevestigde
tijdsonafhankelijke beoordelingsmethode en met de kennis van deskundigen uit
de literatuur over de verschillende typen bewegingsstimuli fouten. De continue
waarderingen correleerden goed met een tijdonafhankelijke waarderingsmethode voor
elk segment van de simulatie en waren ook consistent met de kennis van de relatieve
PMI tussen verschillende geschaalde, ontbrekende en foutieve bewegingsstimuli.
In een tweede experiment, Experiment 2, werd de continue waarderingsmethode
toegepast om de prestaties van twee MCAs in een zeer realistische bewegingssimulatie
van het voertuig te vergelijken. Opnieuw waren de deelnemers in staat om consistente
continue waarderingen over meerdere herhalingen van dezelfde simulatie te geven en
waren hun tijdonafhankelijke waarderingen voor elk geteste MCA goed te vergelijken
met hun gemiddelde continue waarderingen. Dit bevestigde de betrouwbaarheid en
validiteit van de continue waarderingsmethode, ook voor meer realistische voertuigsi-
mulaties.

In Deel II werden de gegevens verkregen met de twee experimenten beschreven in
Deel I, gebruikt voor de ontwikkeling van PMI modellen, om de tijd variërende PMI in
en tussen experimenten te voorspellen. Een algemene modelstructuur werd ontworpen
om visuele en inertiële bewegingsstimuli te vertalen naar een bewegingsincongruentie
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waardering, de Motion Incongruence Rating (MIR). De MIR vertegenwoordigt de
tijd-variërende waardering van PMI, verkregen met de continue waarderingsmethode.
Eerst vertaalt het model de visuele en inertiële bewegingsstimuli in verschillende typen
discrepanties die gecombineerd worden in één maat van PMI en vervolgens gefilterd
worden om de gemodelleerde MIR te verkrijgen. Een op wavelet-gebaseerde bewe-
gingsstimuli discrepantie detectie algoritme (CEDA) werd ontwikkeld om onderscheid
te maken tussen geschaalde, ontbrekende en foutieve bewegingsstimuli, waarbij de
parameters werden geschat met behulp van gegevens van Experiment 1. Het toepassen
van het algoritme toonde aan dat de CEDA onderscheid kon maken tussen geschaalde,
ontbrekende en foutieve bewegingsstimuli zoals verondersteld.
Om de intra-experiment voorspellingscapaciteiten te bepalen, werden drie modellen
van verschillende complexiteit afgeleid van de algemene modelstruktuur. De eerste
helft van de gegevens van Experiment 1 is gebruikt voor de parameter schatting van
de drie modellen, waarna hun voorspellend vermogen is geanalyseerd met behulp
van de tweede helft van deze dataset. De voorspellingsresultaten toonden aan dat alle
modellen belangrijke PMI-kenmerken konden voorspellen. De voorspelling verbeterde
met de toenemende complexiteit van het model. Een interessante observatie was ook
dat foutieve bewegingsstimuli werden gemodelleerd als twee keer schadelijker dan
geschaalde bewegingsstimuli voor dezelfde bewegingsstimuli discrepantie magnitudes.
In het algemeen werd aangetoond dat de modellen inderdaad verschillende soorten
bewegingsstimuli fouten kunnen koppelen aan de gemeten dalingen in bewegings-
stimuli kwaliteit en dat dergelijke dalingen te voorspellen zijn voor data binnen één
experiment.
Om datasets uit verschillende experimenten te vergelijken, werd eerst een methode
ontwikkeld voor het schatten van een Model Transfer Parameter (MTP), waarmee
de waarderingen van het ene experiment kunnen worden geprojecteerd op de waar-
deringen van een tweede experiment. De MTP die nodig was om de waarderingen
van Experimenten 1 en 2 te vergelijken werd geschat met deze methode en gebruikt
om het voorspellende inter-experiment vermogen van de drie afgeleide modellen te
analyseren. Goede voorspellingsmogelijkheden werden alleen verkregen wanneer er
een voldoende rijke dataset werd gebruikt voor de parameter schatting. De hypothese
dat betere modellen kunnen worden verkregen naarmate de schattingsdataset rijker is,
werd ondersteund door het feit dat de modellen die op geaggregeerde gegevens van
beide experimenten werden geschat, de gemeten waarderingen beter volgden dan de
modellen die op een van beide datasets werden geschat.

Deel III, richt zich op het minimaliseren van de PMI. Het vermogen van de PMI-
modellen om een verminderde bewegingsstimuli kwaliteit te kunnen voorspellen
biedt mogelijkheden om deze kwaliteit te verbeteren. De voorspellingen kunnen
bijvoorbeeld worden gebruikt om de kortstondige bewegingsstimuli kwaliteit zo af te
stemmen dat de meest kritische kwaliteitsdalingen worden vermeden. Bovendien kan
de ontwikkeling van deze PMI modellen, door het correleren van de tijdveranderende
PMI met verschillende bewegingsstimuli fouten, helpen om een beter begrip te krijgen
van wat precies de verminderde bewegingsstimuli kwaliteit veroorzaakt.
In dit proefschrift werd een PMI model gebruikt in een op optimalisatie gebaseerd
MCA. De gewichten voor de verschillen tussen de visuele en inertiële bewegingsstimuli
voor lineaire versnelling en rotatiesnelheid in de kostenfunctie van dit MCA werden
geschat met behulp van een statische versie van het minst complexe PMI model van
deel II en gegevens van zowel Experimenten 1 en 2.
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In een derde mens-in-de-loop experiment, Experiment 3, werd de bewegingsstimuli
kwaliteit van het MCA met de op het PMI model gebaseerde gewichten vergeleken
met de kwaliteit van het MCA met zijn oorspronkelijke gewichten, die alleen rekening
hielden met de verschillen in eenheid tussen lineaire versnelling en rotatiesnelheid. De
resultaten toonden aan dat slechts een kleine groep deelnemers, allen met ervaring
in de simulator, de voorkeur gaf aan het MCA met de op het PMI model gebaseerde
gewichten. De voorkeur van de resterende, grotere groep, leek vooral gebaseerd te zijn
op een voorkeur voor ’lager-dan-eenheid-schaling’ tussen voertuig- en simulatorbewe-
gingen, wat consistent is met eerdere literatuur, maar nog niet in de PMI modellen is
verwerkt. In het algemeen, wijzen de resultaten erop dat voor MCA optimalisering
een PMI model op een dataset moet worden geschat die veel rijker is in termen van,
onder andere, aantal en verscheidenheid van deelnemers, bewegingsstimuli fouten en
simulatoren.

In dit proefschrift werd een nieuwe aanpak geïntroduceerd om de waargenomen
bewegingsstimuli kwaliteit van MCAs te verbeteren. Een compleet stappenplan werd
gepresenteerd, waarin wordt beschreven hoe PMI te meten en te modelleren en hoe
dergelijke modellen toe te passen om PMI in bewegingssimulaties te voorspellen en
te minimaliseren. De resultaten die in dit proefschrift worden beschreven, tonen het
potentieel van deze nieuwe aanpak.
Voor toekomstig onderzoek wordt aanbevolen om de ontwikkelde PMI meetmethode
aan te passen voor gebruik in actieve rijsimulaties en de PMI modellen te verbeteren
door algoritmes te ontwerpen om meer types bewegingsstimuli fouten te detecteren.
Het wordt verder aanbevolen om meer en rijkere PMI waarderingsdata te verzamelen
via mens-in-de-loop experimenten om de parameterschatting van deze modellen te
verbeteren. Ten slotte moet ook een systematisch onderzoek worden uitgevoerd naar
hoe en onder welke omstandigheden deze modellen kunnen worden gebruikt om de
kwaliteit van de bewegingsstimuli te verbeteren. Met deze vooruitgang kan de in dit
proefschrift geschetste aanpak belangrijke verbeteringen in simulator bewegingsstimuli
realisme mogelijk maken.
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Introduction

Humans always wanted to go faster and higher than their own legs could carry them.
This led them to invent numerous types of vehicles to move fast over land, water and
air. As training how to handle such vehicles and testing new developments can be
dangerous and costly, vehicle motion simulators were invented. In 1910 the first ve-
hicle motion simulator, the Antoinette trainer (Figure 1.1(a)), was developed to safely
train pilots how to control an aircraft while staying on the ground. Since then, motion
simulator technology has evolved tremendously and many different types of motion
simulators have been developed for a range of vehicle types (Figure 1.1(b)).
In the aerospace industry, motion simulators have increased flight safety by providing
a safe and cost effective way for pilot training, while also reducing the environmental
impact as less airborne training is required [1]. Simulators used for pilot training of-
ten consist of a Stewart platform [2], or hexapod platform (see Figure 1.1(b) TU Delft
simulator), to provide the physical motions cues and a cabin with display to host the
pilot and provide visual motion cues. Aircraft manufacturers such as Airbus and Boe-
ing, but also large airlines such as Air France - KLM and Lufthansa, operate several
training centers with dozens of full motion flight simulators especially for training pur-
poses. Apart from pilot training, flight simulators are used for aerospace research and
development, such as display design [3], handling quality assessment [4, 5] and even
accident investigation [6].
In the automotive industry, the focus of this thesis, also increasing use is made of mo-
tion simulators. For race car driving physical motion cues during high translational
vehicle acceleration are important for proper driver training [7, 8]. Simulator-based
eco-driving training for truck and bus drivers can help to decrease fuel consumption
[9, 10], while simulator-based investigations into driving behaviour under dangerous
conditions can help to improve driver safety [11, 12]. Also during the car design process
motion simulators are used for, for example, chassis testing [13], evaluation of steering
feel [14] or development of driver assistance systems [15, 16]. Due to the importance of
linear motion during car manoeuvres, the motion simulators of big car manufacturers
such as Daimler [17], Renault [18], Toyota [19] and soon also BMW [20], consist of a
hexapod platform on top of a linear track or X-Y table, to expand the horizontal and
lateral motion limits. The cabin is usually large enough to house a real size car and
often contains a 360 degrees display.

1
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(a) (b)

Figure 1.1: (a) Antoinette Trainer. (b) current vehicle motion simulators (top left: SIMONA Research Simulator, TU
Delft, top right: Daimler Simulator, bottom: CyberMotion Simulator, MPI for Biological Cybernetics).

In the aerospace industry specialized motion simulators have also been developed to
simulate specific parts of space flight. The vertical motion simulator at NASA Ames
[21], for example, was designed to simulate the vertical take-off and landing of air-
and spacecraft. The Desdemona, operated by Desdemona B.V. and AMST, having a
centrifuge design motion platform and gimbaled cabin, was initially designed for dis-
orientation training [22].
Other novel simulator designs such as the Cybermotion [23] and CableRobot [24] sim-
ulators at the Max Planck Institute for Biological Cybernetics are, for example, used for
motion perception research. In the DriverLab at Toronto Rehabilitation center [25] the
influence of physical and mental health on driving performance is investigated. This
simulator has additional realistic features such as a weather and glare simulator to sim-
ulate rain and oncoming headlights.
While new technologies and simulator designs have greatly improved the realism of ve-
hicle motion simulators, generating realistic physical motion cues while staying within
the simulator workspace remains one of the grand challenges of vehicle motion sim-
ulation. Realistic motion cues are needed for many aspects of transfer of training in
aircraft [26, 27]. Transfer of training related to fuel consumption reduction was also
greater when providing eco-driving training in motion-base simulators compared to
a fixed-base simulator [28]. Motion cueing has also been shown to significantly af-
fect driving behaviour during, for example, braking [29] and curve driving [30, 31].
Especially for driving behaviour research, and vehicle and human support system de-
velopment which rely on simulating realistic driving behaviour, realistic motion cueing
is extremely important. However, while the addition of physical motion cues increases
simulation realism [32, 33], poor cueing can actually cause a significant reduction in re-
alism and even lead to simulator sickness [34]. In cases of very poor motion cueing
no motion is often preferred to motion [27, 35, 36]. Much research is therefore done
in improving the realism of physical motion cues, such as taking into account human
perception models [37–39], implicitly [40] or explicitly [41, 42] accounting for simulator
constraints or accounting for future simulator motions [43, 44] when generating phys-
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Figure 1.2: General scheme of motion cueing in a vehicle motion simulator.

ical motion cues, or specializing the generation of physical motion cues for specific
simulation scenarios [45, 46].

1.1. Motion cueing algorithms

In Figure 1.2 a general scheme for motion cueing in a vehicle simulator is presented.
The simulator motions, usually taken as the linear acceleration and rotational velocity,
are used unrestricted to generate a visual scene that is displayed inside the motion sim-
ulator. From these visuals, visual motion cues are derived and sensed by the human vi-
sual system. A parallel path is shown for the physical motion cues, which are presented
via the motion platform and sensed by the human gravito-inertial sensors such as the
vestibular and somatosensory systems. The motion platform workspace, however, is
restricted. Therefore, the vehicle motions are run through a motion cueing algorithm
(MCA), which maps the vehicle motions onto the limited simulator workspace, before
being send to the motion platform. Finally, the sensed visual and physical motion cues
are then combined in the human brain and a percept of self motion is obtained.
Most simulators use an MCA that is based on the Classical Washout Filter (CWF) [47].
This MCA uses high pass filters to extract the high-frequency content of the linear
accelerations and rotational velocities and sends only those to the simulator motion
system. Low-pass filters are used to extract the low-frequency content of the lateral
and longitudinal accelerations for what is called “tilt-coordination” [48], i.e., rotating
instead of translating the cabin to simulate prolonged accelerations. If the rotations
occur at a rate below the human perceptual thresholds, the physical rotation angle and
the visual cues for linear acceleration combined are perceived as sustained acceleration
rather than rotation [49]. To avoid the simulator hitting its limits, worst-case tuning
of the MCA parameters is usually applied [50]. This type of tuning involves scaling
down all motions, i.e., global scaling, such that those parts of the simulation that are
not ’worst-case’ are suboptimal. For the trade-off between hitting limits and simula-
tor realism, experts are needed to tune the MCA parameters. This expert tuning often
involves using human-in-the-loop experiments to obtain a ’feeling’ of what is optimal
[50, 51].
In attempts to avoid this inherently subjective manual tuning, adjustments to the CWF
have been made. With the Optimal Washout Filter (OWF) [52], for example, filter orders
and parameters are optimized off-line using an optimization algorithm that minimizes
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a specific cost function. The cost function is often based on calculating the difference
between vehicle and simulator linear acceleration and rotational velocities, but can also
include models of, for example, the human vestibular system to account for thresholds
in the human perceptual system [53]. With this type of MCA, however, the algorithm
is again always tuned for the expected worst-case and the optimization needs to be
repeated when different manoeuvres or vehicles are being simulated.
Adaptive Washout Filters (AWF) [54] were designed in another attempt to avoid global
scaling. This MCA implicitly accounts for simulator limits by adjusting the filter gains
in real time, based on minimizing a cost function that penalizes the difference between
simulator and vehicle motions, the motion magnitude and the gain parameter change.
It is a non-linear and much more complex procedure than the Classical or Optimal
washout filters, but does not lead to significant improvements. Additionally, the adap-
tive filters are prone to instability, which, all together, makes that they are not widely
used.
Lately, with increasing availability of computation power, MCAs based on model pre-
dictive control (MPC) [42, 55–57] have been introduced. Here a model of the simulator
is used to predict the simulator motions for a given set of simulator inputs over a spec-
ified prediction horizon. By minimizing a cost function, the optimal simulator inputs
for a given reference motion are found. Each time step the first simulator input is
sent to the simulator, after which the optimization is repeated. With these MCAs the
simulator limits are explicitly accounted for such that worst-case tuning is no longer
needed, while algorithm stability is obtained with the combination of a well-designed
cost function and a sufficiently long prediction horizon. Additionally, the cost function
can be designed for optimal perceived simulation realism, by taking into account hu-
man percept.
In Figure 1.3 an overview of the different types of MCAs and their challenges are
shown. From this figure it is clear that the one challenge that all types of MCAs share
is the tuning of its parameters, may it be filter parameters or cost function parameters.
Generally this tuning is done by experts, often using human-in-the-loop experiments.
As these experiments are expensive and time consuming, often a limited number of pa-
rameter sets is tested [46, 58–61]. To make a well-grounded choice for the best MCA, it
is imperative that these experiments provide a maximum of information on the cueing
quality. Improving the MCA outside of the limited sets that are tested also requires
knowledge on what causes the differences in perceived cueing quality.
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1.2. Cueing quality

Simulator fidelity, simulation realism, MCA performance and cueing quality, are just a
few of the terms that exist in literature that aim to capture how realistic a vehicle motion
simulation is. Simulation realism can be influenced by many things, such as the quality
of the outside visuals and sounds, the vehicle mock up and the motion cue quality. In
this thesis the term cueing quality will only refer to the effect of the physical motion
cues generated by a motion cueing algorithm on the perceived simulation realism. A
high cueing quality thus results in a more realistic simulation than a low cueing quality,
when all other simulator and experimental conditions are considered equal.
As here we consider perceived realism, high cueing quality does not necessarily mean
that the vehicle motions need to be replicated one to one with the simulator motions.
Using tilt-coordination to simulate sustained acceleration while applying below human
perception threshold rotations, for example, can result in the same cueing quality as
would a one to one sustained acceleration, because the human subject would not per-
ceive the difference.
As the human sensory system is subject to noise, also differences between visual and
physical motion cues in the same motion channel cannot always be distinguished. In
fact, in [62] and [63] coherence zones, ranges which indicate how much a visual motion
cue can differ in magnitude from a corresponding physical motion cue while still being
perceived as coherent, were identified for different motion channels. In this thesis, the
term Perceived Motion Incongruence (PMI) refers to visual-physical motion cue pairs
that are outside of these coherence zones, i.e., that are not coherent or, more generally,
not congruent. The level of PMI then refers to the magnitude of its effect on the simula-
tor realism, i.e., motion cue pairs that are perceived as incongruent but not detrimental
to simulator realism will have a lower PMI than motion cue pairs that are perceived
as incongruent and very detrimental to simulator realism. In Figure 1.4 the mapping
from vehicle motions to this PMI is shown schematically. The vehicle motions usually
consist of lateral, longitudinal and vertical linear accelerations and rotational velocities
in roll, pitch and yaw. The simulator presents these vehicle motions to the human via
visual motion cues, which are similar to the vehicle motion cues, and via physical mo-
tion cues, which differ from the vehicle motion cues. The human senses these motions
cues with its visual and gravito-inertial sensors. Given the instruction, the human can
use its car driving experience and preferences to compare the visual-physical motion
cueing pair to real vehicle motions and generate one percept of motion incongruence.
Much research has been done on when motion cue pairs, i.e., visual and physical mo-
tion cues, are perceived as different [64–68], as these differences can be the most detri-
mental to motion simulation, due to the fact that they can induce simulator sickness
[69, 70]. But also if a motion cue pair has magnitudes that lie within a coherence zone,
i.e., differences are small, it can still affect the cueing quality negatively. In this case,
it is possible that the vehicle motion magnitude that is being simulated is perceived
incorrectly. Most cue integration models, such as [71] and [72], show that the perceived
magnitude of a motion is some weighted average of the motion cues perceived by the
different sensory organs. If an physical motion cue is within the coherence zone of a
visual motion cue, but lower, a weighted average would thus imply that the perceived
motion is somewhat lower than the vehicle motion that is being simulated.
Another aspect of cueing quality is that it is time-varying. Generally, the magnitude of
the differences between vehicle and simulator motions already vary over time, logically
resulting in differences in cueing quality over time. But also when the magnitude of
the difference between simulator and vehicle motions is similar, the cueing quality can
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Figure 1.4: Scheme showing the mapping from vehicle motions to perceived motion incongruence in a motion
simulator.

still differ. In [51] an overview is given of different cueing error types and their varying
influences on the cueing quality. In Figure 1.5(a) an example of two of such cueing
error types, a missing and a false cue, is shown. Both cueing errors have exactly the
same objective quality, i.e., their euclidean distances are the same, as can be seen in
Figure 1.5(b), but one is the result of missing motion, while the other is the result of
added motion where no motion was expected. The false cue is known to be perceived
as more detrimental to the cueing quality than the missing cue [51], as indicated in the
fictional cueing quality detriment in Figure 1.5(b).
The quality of an MCA therefore strongly depends on how often the most detrimental
cueing errors occur during a particular simulation. Information on the time variations
in cueing quality is therefore essential when trying to understand why certain MCAs
result in a low cueing quality, i.e., was there just one very detrimental cueing error or
was the cueing quality constantly low? In the former case, the particular manoeuvre
causing the large drop in quality could for example be removed, or if caused by hitting
a limit, the gains can be scaled down. Knowing when a drop in cueing quality oc-
curred can also help significantly in determining its exact cause related to the simulator
motions.

1.2.1. Measuring Cueing Quality

Generally, a high quality MCA would cause the perception of being in a real moving
vehicle, such that the participant behaves, i.e., controls the vehicle, in a similar way
as in a real vehicle. For training purposes especially, it is important that the subject
reacts to the perceived motions in exactly the same way as (s)he would in a real vehicle.
One way of objectively measuring MCA quality is therefore to examine the control be-
haviour and compare it to control behaviour in a real vehicle, such as was done in [73]
for flying and in [74, 75] for driving behaviour. This, however, is very time consuming
and only a limited set of safe manoeuvres can be tested in this way.
Examining the difference in control behaviour with different MCA settings is also done,
but it remains difficult to determine which control behaviour is desired without a real
life example to compare it to. Another problem with examining control behaviour is
that humans are very good at adapting [76], i.e., it is possible that the measured con-
trol behaviour in the simulator and real vehicle is similar, while the perceived motion
differed. If this is the case during training, the participant would develop incorrect
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associations between certain perceived motions and their manoeuvres and, with that,
fail to develop appropriate control behaviour.
Finally, a more practical issue with measuring control behaviour is that differences in
control behaviour between participants will result in different motions between experi-
ments. It is therefore difficult to perform a human-in-the-loop experiment where each
participant is subjected to exactly the same motion cueing. Conclusions on differences
in control behaviour are therefore generally made by analysing the behaviour over
longer periods of time, and either fitting parameters of a control behaviour model to it
[77] or averaging certain aspects [75, 78], such as control effort, over time. While this
averaging over time can reduce the effects of small differences in motions between par-
ticipants, it also removes all time information for the analysis. This time information,
however, is particularly useful when analysing what caused the differences in MCA
quality.
To avoid dealing with the adaptive nature of humans, one could try to measure the
perceived motions or perceived cueing quality. As perception happens in the brain,
however, it cannot be measured directly. Up till now the only objective measures re-
lated to cueing quality are physiological measures, such as measured in [79], showing
simulator sickness. Simulator sickness, however, only occurs with very bad cueing
quality and develops slowly over time, making it unsuitable to determine which part
of the simulation really caused the sickness.
Instead, therefore, the perceived cueing quality is often measured subjectively. While
subjective measures are generally disfavoured compared to objective measures due to
their large variability, when obtaining a sufficient number of measurements, reliable
results can be obtained. Many studies use subjective measurements such as question-
naires [36, 80], magnitude estimation [39] and paired comparison methods [81, 82] to
determine cueing quality. While here a direct measure of the overall cueing quality is
obtained, still important time information on when the cueing quality was high or low
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is missing. While some have tried to include more time information via questionnaires
[36], it remains difficult to directly relate such results to the provided visual and physi-
cal motion cues.
Finally, also off-line methods to determine MCA quality have been developed. Most of
these methods, however, are related to the often used Classical Washout Filters. The
Sinacori-Schroeder criterion [50], for example, determines acceptable gain and phase
shift regions for the high-pass filter of a Classical Washout Filter. The Advani-Hosman
criteria [83] instead provide such regions for the transfer function of the entire motion
system. The more elaborate Objective Motion Cueing Test (OMCT) [84] uses similar
criteria to determine the motion quality of the entire system, such that simulators can
be compared. Both the Advani-Hosman criteria and the OMCT, however, assume a
mostly linear system and analyse this system in the frequency domain. These methods
are therefore suitable to compare systems using a Classical Washout Filter that keeps
the motions within the simulator limits, but due to the lack of time information these
methods are less suitable for highly non-linear MCAs such as the MPC-based MCA.
Additionally, it is difficult to pinpoint exactly when or why an MCA has a lower qual-
ity.

1.2.2. Improving Cueing Quality

While each type of MCA can be improved on different aspects, as shown in Figure
1.3, one challenge that all MCAs face is parameter tuning for optimal cueing quality.
While human-in-the-loop experiments can be used to determine the best out of a lim-
ited group of MCA settings, such as was done in [46, 58, 60], it is very time-consuming
to use such experiments to actively tune the parameters. Instead, off-line methods,
such as using the Sinacori-Schroeder criterion, Advani-Hosman criterion or OMCT, are
often used to perform an initial analysis and tune the parameters. As mentioned be-
fore, however, these methods were designed for mostly linear algorithms, and are not
suitable for highly non-linear algorithms such as MPC-based MCAs.
Analysing and improving the cueing quality of such highly non-linear MCAs is often
done with MCA independent methods such as visual analysis of the resulting simu-
lator motions for a specific set of test manoeuvres [7, 85, 86] or comparing different
parameter settings using a cost function that takes into account the difference between
simulator and vehicle motions [41, 87, 88]. While the latter method is very time effi-
cient, its effectiveness depends on the choice of cost function.
Cost functions used for MCA optimization, either used within the algorithm itself or
used as an analysis tool of its results, come in many different forms. The simplest ver-
sion is a weighted sum of the (squared) differences between simulator and vehicle mo-
tions [40, 89]. While such cost functions are easy to implement in a cueing algorithm,
they lack important information related to the perception of motion. In an attempt
to include the perceptual system in such cost functions, many have instead first ran
the simulator and vehicle motions through simplified models of our vestibular system
[41, 53, 56]. Such models, for example, account for the washout effect on the rotational
velocity of our vestibular organs, i.e., we do not perceive sustained rotational veloc-
ity [90]. By running the simulator and vehicle motions through such models before
comparing them, differences between simulator and vehicle motions from simulating
sustained rotational velocity with a washout filter would, correctly, not be penalized.
While many claim that including such models improve the perceived cueing quality
[37, 41, 55, 91], not many have actually tested this. In [37] the influence of different
perception models in two types of MCAs was only investigated off-line, by analysing
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the algorithm responses, i.e., the effect of using different perception models on the
perceived cueing quality was not investigated using human-in-the-loop experiments.
Moreover, not only the perception models changed between conditions, but also pa-
rameter retuning was applied, making it difficult to identify the influence of perception
model changes alone. In [37] human-in-the-loop experiments were done to evaluate
some of the different types of cueing algorithms described in [37], however, here the
focus was on differences between an optimal and a non-linear cueing algorithm, rather
than differences between perception models. In [41, 55, 91] the effect of using vestibu-
lar models was not evaluated at all. In [92], however, human-in-the-loop experiment
results were analysed using such vestibular system models and they concluded that
comparing motions after running them through such models does not explain the ex-
periment results better than simply comparing the original motions signals.
Research has also been done on using more elaborate perception models that, for exam-
ple, include models of the visual system [37, 93]. For now these models mainly contain
low level sensory systems and not the higher level cognitive functions of the brain
related to motion perception. While such models can be useful for gaining a better un-
derstanding of human motion perception, they only map actual simulator motions to
perceived motions, and do not determine how this effects the perceived cueing quality.
For example, they do not provide information on how to weigh and combine cueing
errors between perceived vehicle and simulator motions from different motion chan-
nels into one measure of cueing quality. As also stated in [59], rather than the use
of vestibular models, the cueing quality results of an optimization of any algorithm
mainly depends on the choice of cost function and corresponding weighing constants.
Moreover, current motion perception models cannot explain why different cueing error
types, such as scaled and false cues, are not equally detrimental to the cueing quality.
While the model driven bottom-up approaches are very useful in fully understanding
how we perceive self-motion, they are not yet directly applicable to the problem of
predicting cueing quality.

1.3. Research Goals

The mapping of vehicle motions onto the simulator workspace, while maintaining a
high simulation realism, remains one of the main challenges in vehicle motion sim-
ulation. To make an MCA-independent method to analyse time-varying motion cueing
quality off-line is important when trying to improve cueing quality and the effects dif-
ferent types of cueing errors have on this quality, but is currently not yet available. The
research goal of this thesis is therefore:

To develop an MCA-independent off-line prediction method for time-varying perceived
motion incongruence during vehicle motion simulation, to improve motion cueing quality

The focus is put on Perceived Motion Incongruence (PMI) as the differences between
visual and physical motion cues are assumed to be the most detrimental for simulator
realism. No specific MCA type is assumed, such that any developed prediction method
will be MCA-independent. The aim of the PMI prediction method is that it can be used
for tuning of MCA parameters, such that the resulting motion cueing quality can be
optimized.
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1.4. Approach

The research goal is addressed in three steps: measuring, modelling and minimizing per-
ceived motion incongruence. The thesis aims to provide a complete roadmap that
describes how to measure and model PMI and how to apply such models to predict and
with that minimize PMI in motion simulations.
Measuring time-varying PMI is essential for the development of PMI prediction mod-
els. While measurement methods such as paired comparison might be used to measure
overall PMI, no method exists yet that can measure the time-varying aspect of PMI. As
a first step in this thesis, a subjective method to measure time-varying PMI during a
passive driving experiment was therefore developed and validated with two human-in-
the-loop experiments. For subjective measurements the accuracy of the measurement
strongly depends on the number of participants. As more participants with driving
experience are available than, for example, with piloting experience, all experiments in
this thesis are performed with car driving simulations.
The data obtained in the experiments were subsequently used for the development of
a method to design data-driven PMI prediction models. A data-driven top-down mod-
elling approach was chosen, as this would lead to the goal of PMI prediction more
efficiently than a model-driven bottom-up approach. Via a data-driven approach the
focus of the model automatically steers to those aspects of perception that influence
PMI most. A model-driven approach, on the other hand, would require modelling all
aspects of human self-motion perception and cognition, including those aspects that
may not significantly affect simulator realism.
The developed models were subsequently analysed with respect to their explanatory
and prediction power. For the analyses of the prediction power, first a prediction of
new data within one experiment was made. Next, a method to compare PMI rating
data between experiments was developed and used to analyse the prediction power of
the PMI models between experiments.
While off-line PMI predictions can directly be used to minimize PMI via manual tuning
of MCA parameters, a more efficient use of PMI prediction models would be to im-
plement them in MCA optimization algorithms. Hence, in the last step of this thesis
approach a simple PMI prediction model was implemented as the cost function of an
optimization-based MCA, and its effectiveness was analysed in a human-in-the-loop
experiment.

1.5. Scope

As simulator realism and the corresponding motion cueing quality have many aspects,
a number of assumptions to limit the scope of this thesis were made.
First of all, it is assumed that humans can make a reasonable comparison between ve-
hicle and simulator motions while experiencing a vehicle motion simulation. For this
comparison it is assumed that the vehicle motions are perceived via some combination
of visual cues and prior experience in car driving. For this reason, only participants
that were in the possession of a valid driving license were allowed to participate in the
experiments.
Assuming that vehicle motions can accurately be perceived from visual information
and experience disregards important aspects of human self-motion perception. Visu-
ally perceived motion is strongly influenced by aspects such as field-of-view [94, 95]
and visual scene content [95, 96]. Additionally, not all motions can be perceived with
the same accuracy. As the measurement method developed in this thesis only involves
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passive driving, i.e., the participant is not requested to provide any vehicle control
inputs, also the influence of car driving style experience on the perceived motion is
significant. Expected car motions that are difficult to derive from visual cues, such as
longitudinal acceleration, might be influenced by the driving style of the participant
which likely differs from the driving style of the ‘automatic driver’ used in the exper-
iment. For those motions extra care should be taken when deriving conclusions from
the corresponding PMI measurements. It is, however, expected that in general the vi-
sual motion cues are sufficient to derive a reasonable estimate of the vehicle motions.
A second assumption is that the time-variation of cueing quality is purely due to the
time variation of the inputs, and that any PMI prediction model itself is therefore time-
invariant. It is likely that some time variation is present in the human perception sys-
tem, for example, due to the changing physical state of a participant related to fatigue
or stress. However, by properly instructing the participant to, for example, take breaks
before loosing focus, minimizing the experiment duration, and averaging over multiple
measurements of PMI, such time variations are expected to be small when compared
to the time variations caused by inputs.
A third assumption is that the PMI measurement is a good indication of the cueing
quality of the vehicle motion simulation, and minimizing the PMI would thus improve
cueing quality. This measure only includes perceived incongruences between vehicle
and simulator motions, while congruent motion cue pairs that result in incorrectly per-
ceived vehicle motions are not measured. While PMI is not the only aspect of cueing
quality, any incongruences between vehicle and simulator motion negatively affect the
cueing quality and can thus be taken as a measure of cueing quality.

1.6. Outline

The first two chapters of this thesis are based on scientific publications, while other
chapters are written to be included in this thesis first. All chapters can be read inde-
pendently, although some back references occur. All nomenclature and references to
literature are made uniform throughout the thesis.
The thesis is divided in three parts: measuring, modelling and minimizing perceived
motion incongruence. In Figure 1.6 a schematic overview of the thesis is shown. It has
a sequential structure, with each chapter providing data and/or developments for the
next chapters. Part I yields a PMI measurement method and corresponding data sets.
In Part II these data are used for the development of a PMI model. Part III uses both
the developed measurement method, and a PMI model to optimize an MCA.
Chapter 2 introduces a newly developed subjective method based on continuous rating
to measure time-varying PMI. The resulting motion incongruence rating is checked for
reliability and validity in a human-in-the-loop experiment. Data collected in this exper-
iment are also used in Chapters 4, 5 and 6.
Chapter 3 compares an optimization-based MCA, developed at the MPI for Biological
Cybernetics, to the MCA used by the Daimler motion simulator which is based on clas-
sical washout filters. The two MCAs are evaluated using both the newly developed
rating method, to determine its performance, and an off-line analysis describing the
different strategies used by each MCA. The rating data from this experiment are also
used in Chapter 6.
Chapter 4 addresses the varying influences which different cueing error types can have
on cueing quality. A cueing error detection algorithm is developed using data from
Chapter 2 and tested using data from an experiment performed outside this thesis, re-
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ported in [97].
Chapter 5 presents a system identification process for the development of PMI models.
The algorithm developed in Chapter 4 is used in the non-linear part of such PMI mod-
els.
Chapter 6 shows how motion incongruence ratings from different experiments can be
used to analyse the prediction capability of PMI models, or can be properly aggregated
into a larger dataset. The introduced Model Transfer parameter is validated, and differ-
ent PMI models are parametrized and analysed using data obtained in Chapters 2 and
3.
Chapter 7 describes the implementation of one of the PMI models from Chapter 6 as a
cost function in an optimization-based MCA. The performance of this new cost func-
tion is compared to the original cost function using motion incongruence rating results
of a human-the-loop experiment.
The thesis ends with conclusions and recommendations for future research.



2
Continuous Subjective Rating of Perceived

Motion
Incongruence during Driving Simulation

In this chapter a method is presented to measure Perceived Motion Incongruence (PMI) con-
tinuously throughout a motion simulation. The method, which is based on continuous rating,
was validated in an experiment. Subjects were requested to continuously provide a subjective
rating of PMI during a vehicle simulation in the CyberMotion Simulator through constantly
adjusting a rotary knob. Participants demonstrated that they could rate repetitions of the same
simulation consistently. The resulting time-varying ratings were consistent with overall ratings
of the same simulation and with literature on the typical cueing error types presented in this
experiment. The time information contained in the rating data obtained with this method is
essential for development of PMI prediction models as described in Chapter 5.

This chapter is based on the following publication:
Cleij, D., Venrooij, J., Pretto, P., Pool, D. M., Mulder, M., and Bülthoff, H. H. (2017).
“Continuous Subjective Rating of Perceived Motion Incongruence during Driving Sim-
ulation.” in IEEE Transactions on Human-Machine Systems, vol. 48, no. 1, pp. 17-29
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2.1. Introduction

Motion-based vehicle simulators are used for a wide variety of applications. They are
an increasingly important tool for training, research and vehicle system development
in both the car [98] and aerospace industry [1]. However, one of the main challenges in
motion-based simulation is to cope with the typically limited workspace of the simu-
lator. To map the vehicle physical motions onto the simulator motion space, a Motion
Cueing Algorithm (MCA) is used [85]. As the simulator motion space typically is
much smaller than the vehicle motion space, this process inherently results in motion
mismatches: differences between the unconstrained visual and the constrained physical
motion cues. These mismatches result in a decrease of simulator motion fidelity and
unrealistic simulations [51].
For motion simulation fidelity, a distinction is made between physical and perceptual
motion fidelity [99]. Physical fidelity is defined as the match between objectively mea-
sured motion cues in the simulator and in the vehicle. Perceptual fidelity is defined
as the match between simulator and vehicle motion cues as perceived by the human.
The main reason for using a vehicle simulator is not to replicate the physical vehicle
motions, but rather replicate the human perception of these motions [100]. Van der
Steen [62] investigated the effect of physical incongruence between visual and physical
motion on the perceived realism of the combined motion in a passive flight simulation.
He introduced the term coherence zone for the range of physical motion amplitudes
that were still perceived as coherent with a given visual motion amplitude. In [101]
the effect of motion frequency on these coherence zones in passive flight simulation is
investigated and in [102] the term phase coherence zone is introduced as the range of
phase shifts for which physical and visual motion are still perceived as realistic. As in
real vehicles, where all motion stimuli are congruent, motion simulators should provide
physical motions that are within these coherence zones. If this is not possible, at least
the perceived incongruence between different motion stimuli should be minimal. The
current study therefore focuses on measuring any, linear or non-linear, incongruence
between visual and physical motion that is perceived in a passive vehicle simulation.
The degree to which this incongruence results in unrealistic motion is hereby called the
Perceived Motion Incongruence (PMI).
To improve motion cueing we need to understand how this PMI is related to the phys-
ical motion mismatches presented in the simulator. Currently there are methods to
directly or indirectly measure PMI, but they only provide time-invariant overall results.
These discrete results can be used to quantify and compare the overall quality of an
MCA, but cannot be correlated to the time-varying short-duration motion mismatches.
It therefore remains unclear which motion mismatches are responsible for the overall
PMI. A time-varying measure of PMI, that can be correlated to these mismatches, is
therefore needed. Relevant motion mismatches can then be identified and, eventually,
minimized. Besides being instrumental to improve motion cueing, such a measure can
also be used to gain a better understanding of human motion perception.
Perceptual fidelity is measured using human-in-the-loop experiments. During these
experiments participants are usually subjected to vehicle simulations using different
MCA tunings. This fidelity can currently be measured directly via questionnaires or
subjective ratings on the MCA quality. In [36] information on MCA quality during car
motion simulation was obtained via questionnaires after each simulation run and over-
all MCA quality ratings at the end of the experiment. In [80] the Simulation Fidelity
Rating scale together with an overall Motion Fidelity Rating were used to subjectively
rate the motion fidelity of a helicopter motion simulation for different MCAs. In both


