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Chapter 1

Introduction

The work presented in this thesis is devoted to an approximation scheme for the vari-

ational theory of fracture in ductile materials. In contrast to brittle materials, which

respond to very small displacements by elastic deformations and subsequently develop

cracks, in ductile materials a plastic deformation takes place before rupture. Since plas-

ticity plays a significant role in the fracture of ductile materials, the occurrence of plastic

deformations has to be taken into account in an accurate description of the process of

ductile crack growth. Models which are applied in the theory of brittle fracture are

therefore not suitable to predict the crack propagation of ductile materials. Models

which can deal with the nonlinear zone near the crack tip due to plasticity, are the co-

hesive (zone) models. They are therefore widely used in fracture mechanics to describe

ductile fracture processes.

In this thesis, we propose and investigate a variational approximation scheme for

cohesive models in the case of antiplane shear. The variational model studied in this

work is described by functionals depending on a small parameter and on two fields:

the displacement field and an eigendeformation field, where the latter one describes the

permanent deformations that may occur in the body. The focus lies on the asymptotic

behavior of this model in the static case. The rigorous mathematical investigation of

the proposed model relies on the notation of Γ-convergence. From a mechanical point

of view this approach is based on the notion of eigendeformation.

Before presenting the model that we consider, and in order to explain our main

results in detail, we give an introductory overview to the variational modeling and

variational approximation of fracture in fracture mechanics. We thereby highlight the

main mathematical differences between energies used in brittle fracture and in cohesive

fracture. In addition, we briefly discuss possible applications of these energies in the

field of image processing.
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Variational modeling of fracture and other problems related

to image processing

The first formulation of (brittle) fracture problems in a variational setting was proposed

by Francfort and Marigo in [43]. Based on the renowned work of Griffith [49] which

shows that the propagation of a fracture depends on the balance between the elastic

energy released when the crack grows and the energy dissipated to enlarge the crack or

to produce a new one, Francfort and Marigo introduced an energy functional (of Griffith

type) comprising of a bulk term corresponding to the stored elastic energy and a surface

term modelling the fracture energy. For further references in particular of subsequent

works on this topic see [18].

From a mathematical point of view, determining energy minimizers of such function-

als leads to a big class of variational problems, the so-called free discontinuity problems.

This term was first introduced by De Giorgi and Ambrosio in [36] to denote problems

involving competitive volume energies, concentrated on d-dimensional sets, and surface

energies, depending on (d− 1)-dimensional sets.

There are many mathematical problems arising not only from fracture mechanics

but also from image processing, computer vision theory, liquid theory and phase transi-

tion, which are characterized by a competition of bulk and surface energies and can be

therefore formulated as free discontinuity problems (cf., e.g., [8, 20, 33]).

The first problem that was, however, studied within this framework was the Mumford-

Shah model which is applied in image processing to detect the contours of an object in

a black-and-white image. By means of this classical example we briefly discuss the

existence theory of minimizers for free discontinuity problems in what follows. In the

course of this, we also give a short description of the model in the context of image

segmentation. For more details about the Mumford-Shah model and image segmentation

see, e.g., [44] and [11, 58, 67].

Image segmentation in principle deals with the problem of dividing an image into

multiple parts in order to identify objects or other relevant information of this image.

In the Mumford-Shah model that was proposed by Mumford and Shah in [59], there

are an open set Ω in the plane and a grey-scale function g : Ω → [0, 1]. The aim is to

determine a pair (u,K), where K ⊂ Ω is a compact set representing the set of contours

of the object in the image and u ∈ C1(Ω \K) is a smooth approximation of g outside of

K. This pair is determined by minimizing the functional

MS(u,K) = α

∫
Ω\K

(u− g)2 dx+

∫
Ω\K
|∇u|2 dx+ βH1(K). (1.1)

The first term of (1.1) forces u to be close in an integral sense to the original input image

g, while the second term penalizes strong variation of u. The one-dimensional term

H1(K) measures the length of the contours and it is used to prevent oversegmentation.

In addition, α and β are scaling and contrast parameters. Note that the set K is
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not assigned a priori and it is in general not a boundary. Any minimizer (u,K) of

MS is called an optimal pair. In order to show the existence of an optimal pair, one

usually applies the direct method of the calculus of variation, which in particular requires

the lower semicontinuity of MS. The main problem (with the lower semicontinuity of

MS) comes along with the term H1(K) which is in general not lower semicontinuous

with respect to the Hausdorff convergence unless some additional assumptions on the

approximating sequences are made. Therefore, weak formulations of the problem in a

suitable functional setting are needed. When following the idea of De Giorgi to interpret

the set K as the closure of the set of jump points Ju of the function u and taking into

account the structure of the energy functional, it is possible to reformulate the Mumford-

Shah problem in the weak functional framework of the space SBV of special functions

with bounded variation introduced by De Giorgi and Ambrosio [36].

Before going into details, we recall some facts on functions of bounded variation and

on special functions of bounded variation. Hereafter, let Ω be an open subset of Rd

with Lipschitz boundary. A function u lies in BV (Ω) if u ∈ L1(Ω) and its distributional

derivative Du is a finite Radon measure. Most important in the theory of BV -functions

is the decomposition of the measure Du in

Du = ∇uLd +Dsu,

where∇u denotes the density of Du with respect to the d-dimensional Lebesgue measure

and Dsu is the singular part. Moreover, the measure Dsu can be split as

Dsu = Dju+Dcu,

where Dju is the jump part and Dcu is the Cantor part. Details about BV -functions

can be found in [8, 41]. We only want to mention that the measure Dju is of the form

[u] νuHd−1 Ju, where Ju is the Hd−1-rectifiable jump set, νu : Ju → Sd−1 is its normal

and [u] is the jump function, which is the difference between the traces of u on the two

sides of a jump. A function u belongs to SBV (Ω) if u ∈ BV (Ω) and Dsu = Dju.

The weak formulation of the Mumford-Shah functional is given by

MSw(u) := α

∫
Ω

(u− g)2 dx+

∫
Ω
|∇u|2 dx+ βH1(Ju) for u ∈ SBV (Ω). (1.2)

The existence of a minimizer u ∈ SBV (Ω) of the weak formulation in (1.2) can be

shown by the compactness and lower semicontinuity of the space SBV (Ω) with respect

to weak∗-convergence (first proven by Ambrosio in [6]). Finally, one can indeed show

that any minimizer of MSw provides an optimal pair (u, J̄u) for MS.

Inspired by this example, weak formulations of functionals of Griffith type were pro-

posed (cf. [43] and [18]). In the static case one obtains an energy functional defined by

Gw(u) :=
1

2

∫
Ω
|∇u|2 dx+ κH1(Ju) for u ∈ SBV (Ω). (1.3)
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that the variational formulation for Griffith theory of brittle fracture (1.3) is equal, up

to constants, to the weak formulation of the Mumford-Shah problem in (1.7).

A first approximation by Γ-convergence of (1.7) was given by Ambrosio and Tortorelli

in [9] by following an earlier idea developed by Modica and Mortola [57], who approx-

imated the perimeter functional by elliptic functionals. In the approach of Ambrosio

and Tortorelli, the set Ju is replaced by an auxiliary variable v that approximates the

function 1− χJu . In this approximation, a family of elliptic functionals of the following

form is considered

ATε(u, v) =

∫
Ω
v2|∇u|2 dx+

β

2

∫
Ω

(
ε|∇v|2 +

1

ε
(1− v)2

)
dx, (1.8)

defined for u, v ∈ W 1,2(Ω) and 0 ≤ v ≤ 1. In [9], it was proved that the family (ATε)ε

Γ-converges as ε→ 0+ with respect to the L1(Ω)× L1(Ω)-topology to the functional F

defined by

F (u, v) =

∫
Ω
|∇u|2 dx+ βH1(Ju) (1.9)

if u ∈ SBV (Ω) and v = 1 a.e. on Ω, and F (u, v) = +∞ otherwise. Note that minimizing

(1.9) is obviously equivalent to minimize (1.7). See [42] for the generalization of this

result to the case of vector valued functions.

Although the functional ATε was originally introduced for a variational approach

to image segmentation, it is nowadays also used in fracture mechanics to describe a

damage model (cf. [62, 63]). In the latter application the auxiliary variable v in (1.8) is

a measure of the damage state of the corresponding material points and it is therefore

called damage variable. In other words, the material shows an elastic response in regions

where v = 1. As v → 0 the process of degradation of the material increases up to the

maximum possible damage, which is reached at v = 0. In the context of damage models,

the result of Ambrosio and Tortorelli [9] was extended in various directions in the setting

of brittle fracture [34, 50], for instance, to the setting of linearized elasticity [27, 28, 51].

In addition, damage models have also been studied to approximate cohesive energies like

Barenblatt’s energy and Dugdale’s energy (cf. [3, 29, 35]).

A completely different approach is given by non-local approximations. In [23], Braides

and Dal Maso proved the first result in this direction. They considered a family of non-

local functionals of the form

Fε(u) =
1

ε

∫
Ω
f

(
ε−
∫
Bε(x)∩Ω

|∇u(t)|2 dt

)
dx (1.10)

defined for u ∈ W 1,2(Ω). Here, Bε(x) is the open ball with center x and radius ε

and −
∫
B indicates the average on the set B. The function f : [0,+∞) → [0,+∞) is

non-decreasing, continuous and such that

lim
t→0+

f(t)

t
= 1 and lim

t→+∞
f(t) =

β

2
.
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The functionals Fε are non-local in the sense that their energy density at a point x ∈ Ω

depends on the behaviour of u on the whole set Bε(x)∩Ω. In [23], it was shown that the

family (Fε)ε Γ-converges as ε → 0+ with respect to L2(Ω)-topology to the Mumford-

Shah functional (1.7).

By considering non-local functionals where f is replaced by a suitable function fε

in (1.10), functionals with more general surface energies can be approximated in the

sense of Γ-convergence (see [25]). Later this result was generalized by Cortesani and

Toader [31] in the setting of functions of bounded variation and later on by Negri [61] in

the space SBD(Ω) of special functions with bounded deformation (and with more gen-

eral hypotheses on the functions fε) for non-local operators depending on more general

convolution kernels. For completeness we also recall that another approach based on a

different type of non-locality and finite differences was used by Gobbino to approximate

the Mumford-Shah functional in [47]. See also [48] for the approximations of functionals

with more general surface energies. The main difference of this approximation is that

the convolution term is outside of the integrand f and that ∇u is replaced by a finite

difference.

To conclude the discussion about non-local approximations, let us stress that Lussardi

and Vitali [55] (see also [54] for the corresponding result in one dimension) studied the

asymptotic behavior of functionals Fε defined on L1(Ω) by

Fε(u) :=
1

ε

∫
Ω
f

(
ε−
∫
Bε(x)∩Ω

|∇u(t)| dt

)
dx

if u ∈ W 1,1(Ω), and Fε(u) = +∞ otherwise. Here, f : [0,+∞) → [0,+∞) is non-

decreasing, strictly concave and twice continuously differentiable and satisfies

lim
t→0+

f(t)

t
= 1.

They proved that (Fε)ε Γ-converges as ε → 0+ with respect to the L1(Ω)-topology to

the functional F which is defined on L1(Ω) by

F(u) :=

∫
Ω
|∇u|dx+

∫
Ju

θ(|[u]|) dHd−1 + |Dcu|(Ω)

if u ∈ L1(Ω) and its truncations are in BV (Ω), and F(u) = +∞ otherwise. The surface

density θ : [0,+∞)→ [0,+∞) is given by

θ(s) := 2

∫ 1

0
f

(
ωd−1

ωd
s
(√

1− t2
)d−1

)
dt for all s ∈ [0,+∞), (1.11)

where ωd and ωd−1 denote the volume of the d-dimensional ball in Rd and the volume

of the (d− 1)-dimensional ball in Rd−1(with ω0 = 1), respectively. This result was gen-

eralized by Lussardi and Magni [53] for more general non-local operators by considering

convolutions between the gradient and not radially symmetrical kernels.


