In this thesis the regularity of (semi-)linear second order SPDEs of Itô type on general bounded Lipschitz domains is analysed. The non-linear approximation scales of Besov spaces are used to measure the regularity with respect to the space variable, the time regularity being measured first in terms of integrability and afterwards in terms of Hölder norms. In particular, it is shown that in specific situations the spatial Besov regularity of the solution in the non-linear approximation scales is generically higher than its corresponding classical Sobolev regularity. This indicates that it is worth developing spatially adaptive wavelet methods for solving SPDEs instead of using uniform alternatives.
Keywords:
35.00 € | ||
in stock | ||
35.50 € | ||
46.50 € | ||
50.50 € | ||
You can purchase the eBook (PDF) alone or combined with the printed book (Bundle). In both cases we use the payment service of PayPal for charging you - nevertheless it is not necessary to have a PayPal-account. With purchasing the eBook or eBundle you accept our licence for eBooks.
For multi-user or campus licences (MyLibrary) please fill in the form or write an email to order@logos-verlag.de