On the practical side, we introduce a compiler which automatically translates natural specifications of zero-knowledge proofs into concrete implementations. In addition, it generates formal proofs that the generated protocols are indeed sound. On the theoretical side, we analyze inherent efficiency limitations of ∑-protocols, proving the optimality of currently known protocols. Finally, we consider zero-knowledge proofs in the Universal Composability framework. By enabling UC-compliant proofs of existence for the first time, we are able to decrease the computational complexity of many practically relevant UC-secure zero-knowledge protocols to an acceptable level.
KAUFOPTIONEN
35.50 € | ||
auf Lager | ||
Versandkostenfrei innerhalb Deutschlands |
Wollen auch Sie Ihre Dissertation veröffentlichen?