This thesis presents developments in three areas related to k-sets. First, it examines the circle containment problem of Urrutia and Neumann-Lara and reveals its relationships to geometric partitioning problems and centre regions. Next, it investigates k-sets in low dimensions and generalises the k-edge crossing identity of Andrzejak et al. to the sphere. Last, it studies conflict-free colourings of geometric hypergraphs and extends many results on this topic to more restrictive list colouring variants.
36.00 € | ||
in stock | ||
34.50 € | ||
46.00 € | ||
50.00 € | ||
You can purchase the eBook (PDF) alone or combined with the printed book (Bundle). In both cases we use the payment service of PayPal for charging you - nevertheless it is not necessary to have a PayPal-account. With purchasing the eBook or eBundle you accept our licence for eBooks.
For multi-user or campus licences (MyLibrary) please fill in the form or write an email to order@logos-verlag.de