In our thesis we develop algorithms facing this problem by combining the subdivision technique with proper orthogonal decomposition (POD) as a model reduction method. We derive explicit error bounds concerning the long-time behavior of POD solutions, propose a discrete version of the Prohorov metric as a proper distance notion for discrete measures computed by the algorithms, and analytically compare the approximation processes of the AIM algorithm and the POD-based algorithms.
A marginal-like representation of discrete measures is proposed in order to visualize the numerical experiments. The algorithms are applied to finite element discretizations of the Chafee-Infante problem in order to show the power of our approach.
37.00 € | ||
in stock |