New Enhanced Sensitivity Infrared Laser Spectroscopy Techniques Applied to Reactive Plasmas and Trace Gas Detection

Stefan Welzel

ISBN 978-3-8325-2345-9
197 Seiten, Erscheinungsjahr: 2009
Preis: 36.50 €
New Enhanced Sensitivity Infrared Laser Spectroscopy Techniques Applied to Reactive Plasmas and Trace Gas Detection

Infrared laser absorption spectroscopy (IRLAS) employing both tuneable diode and quantum cascade lasers (TDLs, QCLs) has been applied with both high sensitivity and high time resolution to plasma diagnostics and trace gas measurements.

TDLAS combined with a conventional White type multiple pass cell was used to detect up to 13 constituent molecular species in low pressure Ar/H2/N2/O2 and Ar/CH4/N2/O2 microwave discharges, among them the main products such as H2O, NH3, NO and CO, HCN respectively. The hydroxyl radical has been measured in the mid infrared (MIR) spectral range in-situ in both plasmas yielding number densities of between 1011 ... 1012 cm-3. Strong indications of surface dominated formation of either NH3 or N2O and NO were found in the H2-N2-O2 system. In methane containing plasmas a transition between deposition and etching conditions and generally an incomplete oxidation of the precursor were observed.

The application of QCLs for IRLAS under low pressure conditions employing the most common tuning approaches has been investigated in detail. A new method of analysing absorption features quantitatively when the rapid passage effect is present is proposed. If power saturation is negligible, integrating the undisturbed half of the line profile yields accurate number densities without calibrating the system. By means of a time resolved analysis of individual chirped QCL pulses the main reasons for increased effective laser line widths could be identified. Apart from the well-known frequency down chirp non-linear absorption phenomena and bandwidth limitations of the detection system may significantly degrade the performance and accuracy of inter pulse spectrometers. The minimum analogue bandwidth of the entire system should normally not fall below 250 MHz.

QCLAS using pulsed lasers has been used for highly time resolved measurements in reactive plasmas for the first time enabling a time resolution down to about 100 ns to be achieved. A temperature increase of typically less than 50 K has been established for pulsed DC discharges containing Ar/N2 and traces of NO. The main NO production and depletion reactions have been identified from a comparison of model calculations and time resolved measurements in plasma pulses of up to 100 ms. Considerable NO struction is observed after 5 ... 10 ms due to the impact of N atoms.

Finally, thermoelectrically cooled pulsed and continuous wave (cw) QCLs have been employed for high finesse cavity absorption spectroscopy in the MIR. Cavity ring down spectroscopy (CRDS) has been performed with pulsed QCLs and was found to be limited by the intrinsic frequency chirp of the laser suppressing an efficient intensity build-up inside the cavity. Consequently the accuracy and advantage of an absolute internal absorption calibration is not achievable. A room temperature cw QCL was used in a complementary cavity enhanced absorption spectroscopy (CEAS) configuration which was equipped with different cavities of up to ~ 1.3 m length. This spectrometer yielded path lengths of up to 4 km and a noise equivalent absorption down to 4 x 10-8 cm-1Hz-1/2. The corresponding molecular concentration detection limit (e.g. for CH4, N2O and C2H2 at 1303 cm-1/7.66 μm) was generally below 1 x 1010 cm-3 for 1 s integration times and one order of magnitude less for 30 s integration times. The main limiting factor for achieving even higher sensitivity is the residual mode noise of the cavity. Employing a ~ 0.5 m long cavity the achieved sensitivity was good enough for the selective measurement of trace atmospheric constituents at 2.2 mbar.

  • Quantum Cascade Laser
  • Plasma Surface Interaction
  • Plasma Chemistry
  • Cavity Ring-Down Spectroscopy (CRDS)
  • Cavity Enhanced Absorption Spectroscopy (CEAS)


36.50 €
auf Lager
Versandkostenfrei innerhalb Deutschlands

Wollen auch Sie Ihre Dissertation veröffentlichen?

cover cover cover cover cover cover cover cover cover