The second part is concerned with the application of Gelfand frames to the adaptive numerical treatment of linear elliptic problems. We propose inexact versions of well-known iterative schemes for the frame coordinate representation of the given operator equation. Both convergence and optimality of the considered methods can be proved and illustrated by numerical examples.
In the third part, we consider adaptive wavelet methods for the numerical treatment of linear parabolic equations. Due to the initial value problem structure, we consider a semidiscretization in time with linearly implicit methods first. The arising sequence of elliptic operator equations is then solved adaptively with wavelet methods. It is shown how to exploit the key properties of wavelet bases to a considerable extent, e.g., in preconditioning strategies and for the convergence and complexity analysis of the overall algorithm. We finish with numerical experiments in one and two spatial dimensions.
40.50 € | ||
in stock |