Die praktische Bedeutung dieses Lernverfahrens wird am Beispiel zweier Regelungsstrategien dargestellt: Der modellfreien neuronalen Regelung, welche ohne mathematisches Modell des geregelten Systems auskommt, und der neuronal gestützten dynamischen Inversion, bei der die Nutzung des Gleitzustandslernverfahrens besondere Vorteile mit sich bringt. Dies liegt darin begründet, dass der Gleitzustand der Netzwerkzustände eine stabilisierende Wirkung auf die Fehlerdynamik des geschlossenen Regelkreises besitzt. Am Beispiel eines beschädigten unbemannten Flugsystems zeigt sich, dass dieses Verfahren wegen seiner dynamischen Bestimmung der Lernraten eine höhere Konvergenzgeschwindigkeit als vergleichbare etablierte Ansätze aufweist. Die Ergebnisse der Arbeit unterstreichen die Vorzüge der interdisziplinären Kombination von klassischer Regelungstechnik und Maschinenlernverfahren bei der Auslegung komplexer Regelungssysteme.
Kaufoptionen
Versandkostenfrei innerhalb Deutschlands |
Wollen auch Sie Ihre Dissertation veröffentlichen?